Home
Class 12
MATHS
sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)...

`sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=`

A

13

B

14

C

15

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec^2(\tan^{-1}2) + \csc^2(\cot^{-1}3) \), we will use the trigonometric identities for secant and cosecant functions. ### Step-by-Step Solution: 1. **Identify the angles**: Let \( \theta_1 = \tan^{-1}(2) \) and \( \theta_2 = \cot^{-1}(3) \). 2. **Use the identity for secant**: We know that: \[ \sec^2(\theta) = 1 + \tan^2(\theta) \] Therefore, for \( \theta_1 \): \[ \sec^2(\tan^{-1}(2)) = 1 + \tan^2(\tan^{-1}(2)) \] Since \( \tan(\tan^{-1}(2)) = 2 \): \[ \sec^2(\tan^{-1}(2)) = 1 + 2^2 = 1 + 4 = 5 \] 3. **Use the identity for cosecant**: We also know that: \[ \csc^2(\theta) = 1 + \cot^2(\theta) \] Therefore, for \( \theta_2 \): \[ \csc^2(\cot^{-1}(3)) = 1 + \cot^2(\cot^{-1}(3)) \] Since \( \cot(\cot^{-1}(3)) = 3 \): \[ \csc^2(\cot^{-1}(3)) = 1 + 3^2 = 1 + 9 = 10 \] 4. **Combine the results**: Now, we can add the two results together: \[ \sec^2(\tan^{-1}(2)) + \csc^2(\cot^{-1}(3)) = 5 + 10 = 15 \] ### Final Answer: Thus, the value of \( \sec^2(\tan^{-1}2) + \csc^2(\cot^{-1}3) \) is \( 15 \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.2|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART-B: MASTERING THE BEST|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

sec^(2)(tan^(-1)4)+cosec^(2)(cot^(-1)3) =

Prove that sec^(2) (tan ^(-1) 3) + cosec^(2)(cot^(-1)2) = 15

sec^(2)(tan^(01)2)+csc^(2)(cot^(-1)3) is equal to 5 (b) 13 (c) 15 (d) 6

Evaluate the following : tan^(2) ( sec^(-1) 2) + cot^(2) ( cosec^(-1) 3) .

The value of tan^(2) (sec ^(-1) 2) + cot^(2) (cosec^(-1) 3) is equal to

Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11 . Statement -2 :tan^(2)theta+sec^(2)theta=1=cot^(2)theta+cosec^(2)theta

The value of tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3) is

Evaluate : tan^(2) ("sec"^(-1)3) + cot^(2) ("cosec^(-1) 4) .