Home
Class 12
MATHS
If sin^(-1)x + sin^(-1)y =(2pi)/3, then:...

If `sin^(-1)x + sin^(-1)y =(2pi)/3`, then: `cos^(-1)x +cos^(-1)y=`

A

`sqrt(3)`

B

`pi/3`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^{-1}x + \cos^{-1}y \) given that \( \sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3} \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ \sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3} \] 2. **Use the identity:** We know that: \[ \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} \] Therefore, we can express \( \sin^{-1}x \) and \( \sin^{-1}y \) in terms of \( \cos^{-1}x \) and \( \cos^{-1}y \): \[ \sin^{-1}x = \frac{\pi}{2} - \cos^{-1}x \] \[ \sin^{-1}y = \frac{\pi}{2} - \cos^{-1}y \] 3. **Substitute these into the original equation:** \[ \left(\frac{\pi}{2} - \cos^{-1}x\right) + \left(\frac{\pi}{2} - \cos^{-1}y\right) = \frac{2\pi}{3} \] 4. **Simplify the equation:** \[ \frac{\pi}{2} + \frac{\pi}{2} - \cos^{-1}x - \cos^{-1}y = \frac{2\pi}{3} \] This simplifies to: \[ \pi - \cos^{-1}x - \cos^{-1}y = \frac{2\pi}{3} \] 5. **Rearrange to isolate \( \cos^{-1}x + \cos^{-1}y \):** \[ -(\cos^{-1}x + \cos^{-1}y) = \frac{2\pi}{3} - \pi \] \[ -(\cos^{-1}x + \cos^{-1}y) = \frac{2\pi}{3} - \frac{3\pi}{3} \] \[ -(\cos^{-1}x + \cos^{-1}y) = -\frac{\pi}{3} \] 6. **Multiply by -1:** \[ \cos^{-1}x + \cos^{-1}y = \frac{\pi}{3} \] ### Final Answer: \[ \cos^{-1}x + \cos^{-1}y = \frac{\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.2|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART-B: MASTERING THE BEST|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

What are the values of (x, y) satisfying the simultaneous equation sin^(-1)x + sin^(-1)y=(2pi)/(3)and cos^(-1)x - cos^(-1)y=(pi)/(3) ?

If sin^(-1)x+sin^(-1)y=(pi)/(2), "then" cos^(-1)x+cos^(-1)y is equal to

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^(-1) x + sin^(-1)y = pi//2 and cos^(-1) x - cos^(-1) y = 0 , then value x and y respectively

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) and cos^(-1)x-cos^(-1)y=-(pi)/(3) then the number of values of (x,y) is

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

Solve the following equations/system of equations sin^(-1) x+sin^(-1)y=(2pi)/(3) & cos^(-1)x-cos^(-1)y=pi/3