Home
Class 12
MATHS
If tan theta(1).tantheta(2)=k, then: (co...

If `tan theta_(1).tantheta_(2)=k`, then: `(cos(theta_(1)-theta_(2))/(cos(theta_(1)+theta_(2)))=`

A

`(1+k)/(1-k)`

B

`(1-k)/(1+k)`

C

`(k+1)/(k-1)`

D

`(k-1)/(k+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \(\frac{\cos(\theta_1 - \theta_2)}{\cos(\theta_1 + \theta_2)}\) given that \(\tan \theta_1 \cdot \tan \theta_2 = k\). ### Step-by-Step Solution: 1. **Recall the Formulas**: We start with the formulas for \(\cos(\theta_1 - \theta_2)\) and \(\cos(\theta_1 + \theta_2)\): \[ \cos(\theta_1 - \theta_2) = \cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 \] \[ \cos(\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \] 2. **Set Up the Fraction**: We can now set up the fraction: \[ \frac{\cos(\theta_1 - \theta_2)}{\cos(\theta_1 + \theta_2)} = \frac{\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2}{\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2} \] 3. **Divide Numerator and Denominator**: To simplify, we divide both the numerator and the denominator by \(\cos \theta_1 \cos \theta_2\): \[ = \frac{\frac{\cos \theta_1 \cos \theta_2}{\cos \theta_1 \cos \theta_2} + \frac{\sin \theta_1 \sin \theta_2}{\cos \theta_1 \cos \theta_2}}{\frac{\cos \theta_1 \cos \theta_2}{\cos \theta_1 \cos \theta_2} - \frac{\sin \theta_1 \sin \theta_2}{\cos \theta_1 \cos \theta_2}} \] This simplifies to: \[ = \frac{1 + \frac{\sin \theta_1}{\cos \theta_1} \cdot \frac{\sin \theta_2}{\cos \theta_2}}{1 - \frac{\sin \theta_1}{\cos \theta_1} \cdot \frac{\sin \theta_2}{\cos \theta_2}} \] 4. **Substitute Tangent Values**: Recognizing that \(\frac{\sin \theta}{\cos \theta} = \tan \theta\), we can substitute: \[ = \frac{1 + \tan \theta_1 \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2} \] Given that \(\tan \theta_1 \tan \theta_2 = k\), we substitute \(k\) into the equation: \[ = \frac{1 + k}{1 - k} \] 5. **Final Result**: Thus, the expression simplifies to: \[ \frac{\cos(\theta_1 - \theta_2)}{\cos(\theta_1 + \theta_2)} = \frac{1 + k}{1 - k} \] ### Conclusion: The final answer is: \[ \frac{\cos(\theta_1 - \theta_2)}{\cos(\theta_1 + \theta_2)} = \frac{1 + k}{1 - k} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.2|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART-B: MASTERING THE BEST|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If tan theta_(1)tan theta_(2)=k, then (cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))=(1+k)/(1-k) b.(1-k)/(1+k) c.(k+1)/(k-1) d.(k-1)/(k+1)

if tan theta_(1)=k cot theta_(2) then find (cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))=

If cos theta_(1)=2cos theta_(2), then tan((theta_(1)-theta_(2))/(2))tan((theta_(1)+theta_(2))/(2)) is equal to (a) (1)/(3)(b)-(1)/(3)(c)1(d)-1

If cos(theta_(1))=2cos(theta_(2)) then tan((theta_(1)-theta_(2))/(2))tan((theta_(1)+theta_(2))/(2))=( i) (1)/(3)(ii)-(1)/(3)(iii)1(iv)-1

If (cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))+(cos(theta_(3)+theta_(4)))/(cos(theta_(3)-theta_(4)))=0, then tantheta_(1)tan theta_(2)tan theta_(3)tan theta_(4)=

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

f theta_(1),theta_(2),theta_(3),theta_(4),theta_(5)in(0,(pi)/(2)), satisfying tan theta_(1)tan theta_(2)tan theta_(3)tan theta_(4)tan theta_(5)=1 then maximum_(2 value of )theta_(3)tan theta_(4)cos theta_(5) is cos theta_(1)cos theta_(2)cos theta_(3)cos theta_(4)cos theta_(5) is

(cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))+(cos(theta_(3)+theta_(4)))/(cos(theta_(3)-theta_(4)))=0then(tan theta_(1)*tan theta_(2))/(cot theta_(2)*cot theta_(4))

given that tan(theta_(1)+theta_(2))=(tan theta_(1)+tan theta_(2))/(1-tan theta_(1)*tan theta_(2)) find (theta_(1)+theta_(2)) when tan theta_(1)=(1)/(2),tan theta_(2)=(1)/(3)

If sin theta_(1)+sin theta_(2)+sin theta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3) is equal to 3(b)2(c)1(d)0