Home
Class 12
MATHS
If tan^(-1)3+ tan^(-1)x = tan^(-1)8, the...

If `tan^(-1)3+ tan^(-1)x = tan^(-1)8`, then: `x=`

A

`5`

B

`1/5`

C

`5/14`

D

`14/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(3) + \tan^{-1}(x) = \tan^{-1}(8) \), we can use the formula for the sum of two inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] ### Step-by-Step Solution: 1. **Apply the formula for the sum of inverse tangents**: \[ \tan^{-1}(3) + \tan^{-1}(x) = \tan^{-1}\left(\frac{3 + x}{1 - 3x}\right) \] Thus, we have: \[ \tan^{-1}\left(\frac{3 + x}{1 - 3x}\right) = \tan^{-1}(8) \] 2. **Eliminate the inverse tangent**: Since \( \tan^{-1}(A) = \tan^{-1}(B) \) implies \( A = B \), we can set the arguments equal to each other: \[ \frac{3 + x}{1 - 3x} = 8 \] 3. **Cross-multiply to eliminate the fraction**: \[ 3 + x = 8(1 - 3x) \] Expanding the right side gives: \[ 3 + x = 8 - 24x \] 4. **Rearrange the equation**: Move all terms involving \( x \) to one side and constant terms to the other side: \[ x + 24x = 8 - 3 \] Simplifying this results in: \[ 25x = 5 \] 5. **Solve for \( x \)**: Divide both sides by 25: \[ x = \frac{5}{25} = \frac{1}{5} \] ### Final Answer: \[ x = \frac{1}{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.2|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART-B: MASTERING THE BEST|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

If tan^(-1)x+tan^(-1)(1-x)=tan^(-1)(4/3) then x=

If: tan^(-1)(1/3) + tan^(-1)( 3/4) - tan^(-1)(x/3) =0 , then: x=

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)

If tan^(-1)(x+1)+ tan^(-1)(x-1)= tan^(-1)(8/31) ,then x is equal to

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .