Home
Class 12
MATHS
If tan^(-1)a + tan^(-1)b + tan^(-1)c= si...

If `tan^(-1)a + tan^(-1)b + tan^(-1)c= sin^(-1)1`, then

A

a+b+c=1

B

a+b+c=abc

C

abc=1

D

ab + bc + ca=1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.2|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART-B: MASTERING THE BEST|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

If tan^(-1)a+tan^(-1)b+tan^(-1)c=pi , then which of the following is true ?

tan^(-1)2-tan^(-1)1=tan^(-1)(1)/(3)

If tan ^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove tjhat a+b+c=abc

Q.if tan ^(-1)a+tan^(-1)b+tan^(-1)c=pi, then prove that a+b+c=abc.

if tan^(-1)a+tan^(-1)b+tan^(-1)c=pi then prove that a+b+c=abc