Home
Class 12
MATHS
tan^(-1)((sqrt(2)+1)/(sqrt(2)-1)) - tan^...

`tan^(-1)((sqrt(2)+1)/(sqrt(2)-1)) - tan^(-1)(sqrt(2)/2)`=

A

`pi/3`

B

`pi/6`

C

`pi/4`

D

`pi/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan^{-1}\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) - \tan^{-1}\left(\frac{\sqrt{2}}{2}\right) \), we will use the formula for the difference of two inverse tangents: \[ \tan^{-1}(A) - \tan^{-1}(B) = \tan^{-1\left(\frac{A - B}{1 + AB}\right) \] ### Step 1: Identify A and B Let: - \( A = \frac{\sqrt{2}+1}{\sqrt{2}-1} \) - \( B = \frac{\sqrt{2}}{2} \) ### Step 2: Calculate A - B Now we need to compute \( A - B \): \[ A - B = \frac{\sqrt{2}+1}{\sqrt{2}-1} - \frac{\sqrt{2}}{2} \] To subtract these fractions, we need a common denominator. The common denominator will be \( 2(\sqrt{2}-1) \): \[ A - B = \frac{2(\sqrt{2}+1) - \sqrt{2}(\sqrt{2}-1)}{2(\sqrt{2}-1)} \] ### Step 3: Simplify the numerator Now, simplify the numerator: \[ 2(\sqrt{2}+1) = 2\sqrt{2} + 2 \] \[ \sqrt{2}(\sqrt{2}-1) = 2 - \sqrt{2} \] So, \[ A - B = \frac{(2\sqrt{2} + 2) - (2 - \sqrt{2})}{2(\sqrt{2}-1)} = \frac{2\sqrt{2} + 2 - 2 + \sqrt{2}}{2(\sqrt{2}-1)} = \frac{3\sqrt{2}}{2(\sqrt{2}-1)} \] ### Step 4: Calculate 1 + AB Next, we need to calculate \( 1 + AB \): \[ AB = \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)\left(\frac{\sqrt{2}}{2}\right) = \frac{(\sqrt{2}+1)\sqrt{2}}{2(\sqrt{2}-1)} = \frac{2 + \sqrt{2}}{2(\sqrt{2}-1)} \] Now, add 1: \[ 1 + AB = 1 + \frac{2 + \sqrt{2}}{2(\sqrt{2}-1)} = \frac{2(\sqrt{2}-1) + 2 + \sqrt{2}}{2(\sqrt{2}-1)} = \frac{2\sqrt{2} - 2 + 2 + \sqrt{2}}{2(\sqrt{2}-1)} = \frac{3\sqrt{2}}{2(\sqrt{2}-1)} \] ### Step 5: Substitute into the formula Now we can substitute back into the formula: \[ \tan^{-1}\left(\frac{A - B}{1 + AB}\right) = \tan^{-1}\left(\frac{\frac{3\sqrt{2}}{2(\sqrt{2}-1)}}{\frac{3\sqrt{2}}{2(\sqrt{2}-1)}}\right) = \tan^{-1}(1) \] ### Step 6: Final result Since \( \tan^{-1}(1) = \frac{\pi}{4} \): \[ \tan^{-1}\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) - \tan^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.1|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.2|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS - PART-B: MASTERING THE BEST|27 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

tan(2tan^(-1)((sqrt(5)-1)/(2)))=

The value of tan^(-1)((1)/(sqrt(2)))-tan^(-1)((sqrt(5-2sqrt(6)))/(1+sqrt(6))) is equal to

Find the value of (2tan^(-1)((1)/(sqrt(3)))+cos(tan^(-1)(2sqrt(2)))

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

Prove that: i) tan^(-1)(sqrt(x)+sqrt(y))/(1-sqrt(xy))=tan^(-1)sqrt(x)+tan^(-1)sqrt(y) ii) tan^(-1)(x+sqrt(x))/(1-x^(3//2))=tan^(-1)x+tan^(-1)sqrt(x) iii) tan^(-1)(sinx)/(1+cosx)=x/2

quad Ifalpha=2tan^(-1)(sqrt(3-2sqrt(2)))+sin^(-1)((1)/(sqrt(6)-sqrt(2))),beta=cot^(-1)(sqrt(3)-2)+(1)/(8)sec^(-1)(-2) and gamma=tan^(-1)((1)/(sqrt(2)))+cos^(-1)((1)/(sqrt(3))), then

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

tan^(-1)(sqrt(3))+sec^(-1)(-2) =

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to sin^(-1)(2x sqrt(1-x^(2))), if -(1)/(sqrt(2))

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MASTERING THE BEST - ALL TOPICS
  1. If cos 25^(@) + sin 25^(@) =p, then: cos 50^(@)=

    Text Solution

    |

  2. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  3. tan^(-1)((sqrt(2)+1)/(sqrt(2)-1)) - tan^(-1)(sqrt(2)/2)=

    Text Solution

    |

  4. Solve sin x + sqrt(3) cos x = sqrt(2)

    Text Solution

    |

  5. If: cos^(-1) (sin theta) = sin^(-1) (cos theta), then: theta=

    Text Solution

    |

  6. If: tan theta + tan 2theta = tan 3theta, then: theta=

    Text Solution

    |

  7. Solve: 3tan(theta-15^(@))=tan(theta+15^(@))

    Text Solution

    |

  8. If: (tan x)/(tan 2x)+ (tan 2x)/(tan x)+2=0, then: x=

    Text Solution

    |

  9. If: cos^(16)x - sin^(64)x =1, then: x=

    Text Solution

    |

  10. If: (1- cos 2x)/(1+ cos 2x)=3, then: x =

    Text Solution

    |

  11. If: cotx + cot(pi/4 +x)=2, then: x=

    Text Solution

    |

  12. If: tantheta + tan 2theta + tan 3theta = tan theta.tan2theta.tan 3the...

    Text Solution

    |

  13. If: sin^(2)x secx + sqrt(3).tanx=0, then: x=

    Text Solution

    |

  14. |[cos(x+y),-sin(x+y),cos2y],[sin x,cos x,sin y],[-cos x,sin x,-cos y]|...

    Text Solution

    |

  15. The value of theta , lying between theta =0 and theta=(pi)/(2) and ...

    Text Solution

    |

  16. The equation E= cos x.sinx attains its maximum value at x=

    Text Solution

    |

  17. Equation k.cosx-3.sinx=k+1 is solvable in R if k is in the internal

    Text Solution

    |

  18. If alpha,beta are the different values of x satisfying acosx+bsinx=c t...

    Text Solution

    |

  19. The general solution of e^(-1/sqrt2)(e^sinx+e^cosx)=2 is

    Text Solution

    |

  20. If tan 2x =tan((x)/(2)), then the value of x is

    Text Solution

    |