Home
Class 12
MATHS
If: (1-cos2x)/(1+cos 2x)=3, then: x=...

If: `(1-cos2x)/(1+cos 2x)=3,` then: x=

A

`2npi +- pi/6`

B

`npi +- pi/6`

C

`2npi +- pi/3`

D

`npi +- pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1 - \cos 2x}{1 + \cos 2x} = 3\), we can follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ \frac{1 - \cos 2x}{1 + \cos 2x} = 3 \] ### Step 2: Cross-multiply Cross-multiply to eliminate the fraction: \[ 1 - \cos 2x = 3(1 + \cos 2x) \] ### Step 3: Expand the right side Distribute the 3 on the right side: \[ 1 - \cos 2x = 3 + 3\cos 2x \] ### Step 4: Rearrange the equation Move all terms involving \(\cos 2x\) to one side and constant terms to the other: \[ 1 - 3 = 3\cos 2x + \cos 2x \] \[ -2 = 4\cos 2x \] ### Step 5: Solve for \(\cos 2x\) Divide both sides by 4: \[ \cos 2x = -\frac{1}{2} \] ### Step 6: Find the general solution for \(2x\) The cosine function equals \(-\frac{1}{2}\) at specific angles: \[ 2x = \frac{2\pi}{3} + 2n\pi \quad \text{and} \quad 2x = \frac{4\pi}{3} + 2n\pi \] where \(n\) is any integer. ### Step 7: Solve for \(x\) Divide each part of the equation by 2: \[ x = \frac{\pi}{3} + n\pi \quad \text{and} \quad x = \frac{2\pi}{3} + n\pi \] ### Step 8: Combine the solutions The general solutions can be written as: \[ x = n\pi + \frac{\pi}{3} \quad \text{and} \quad x = n\pi + \frac{2\pi}{3} \] ### Final Answer Thus, the solutions for \(x\) are: \[ x = n\pi + \frac{\pi}{3} \quad \text{and} \quad x = n\pi + \frac{2\pi}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP: CHAPTER 3-3.2|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|39 Videos
  • VECTORS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|20 Videos

Similar Questions

Explore conceptually related problems

If: (1- cos 2x)/(1+ cos 2x)=3 , then: x =

General solution of (1-cos2x)/(1+cos2x)=3 is

int(1+cos 2x)/(1-cos 2x)dx

int ((1-cos2x))/((1+cos 2x)) dx = ?

int(1+cos^(2)x)/(1-cos2x)dx=

intsqrt((1-cos2x)/(1+cos 2x))dx=

int(1+cos^(2)x)/(1-cos2x)*dx

If y,=(1)/(2)log((1-cos2x)/(1+cos2x)), prove that (dy)/(dx),=2cos ec2x

If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

Differentate : sqrt((1-cos2x)/(1+cos2x))