Home
Class 12
MATHS
If cos x =1/sqrt(1+t^(2)), and sin y = t...

If `cos x =1/sqrt(1+t^(2))`, and `sin y = t/sqrt(1+t^(2))`, then `(dy)/(dx)` =

A

`-1`

B

`1/(1+t^(2))`

C

`(1-t)/(1+t^(2))`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equations \( \cos x = \frac{1}{\sqrt{1+t^2}} \) and \( \sin y = \frac{t}{\sqrt{1+t^2}} \), we can use implicit differentiation and the chain rule. ### Step-by-Step Solution: 1. **Differentiate \( \cos x \) with respect to \( t \)**: \[ \frac{d}{dt}(\cos x) = -\sin x \cdot \frac{dx}{dt} \] From the equation \( \cos x = \frac{1}{\sqrt{1+t^2}} \), we differentiate the right-hand side: \[ \frac{d}{dt}\left(\frac{1}{\sqrt{1+t^2}}\right) = -\frac{1}{2}(1+t^2)^{-3/2} \cdot 2t = -\frac{t}{(1+t^2)^{3/2}} \] Thus, we have: \[ -\sin x \cdot \frac{dx}{dt} = -\frac{t}{(1+t^2)^{3/2}} \] 2. **Differentiate \( \sin y \) with respect to \( t \)**: \[ \frac{d}{dt}(\sin y) = \cos y \cdot \frac{dy}{dt} \] From the equation \( \sin y = \frac{t}{\sqrt{1+t^2}} \), we differentiate the right-hand side: \[ \frac{d}{dt}\left(\frac{t}{\sqrt{1+t^2}}\right) = \frac{\sqrt{1+t^2} \cdot 1 - t \cdot \frac{1}{2}(1+t^2)^{-1/2} \cdot 2t}{1+t^2} = \frac{(1+t^2) - t^2}{(1+t^2)^{3/2}} = \frac{1}{(1+t^2)^{3/2}} \] Thus, we have: \[ \cos y \cdot \frac{dy}{dt} = \frac{1}{(1+t^2)^{3/2}} \] 3. **Express \(\frac{dy}{dt}\) in terms of \(\frac{dx}{dt}\)**: From the first equation: \[ \frac{dx}{dt} = \frac{t}{\sin x (1+t^2)^{3/2}} \] From the second equation: \[ \frac{dy}{dt} = \frac{1}{\cos y (1+t^2)^{3/2}} \] 4. **Use the chain rule to find \(\frac{dy}{dx}\)**: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{1}{\cos y (1+t^2)^{3/2}}}{\frac{t}{\sin x (1+t^2)^{3/2}}} = \frac{\sin x}{t \cos y} \] 5. **Substitute \(\sin x\) and \(\cos y\)**: From the definitions: \[ \sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - \left(\frac{1}{\sqrt{1+t^2}}\right)^2} = \sqrt{\frac{t^2}{1+t^2}} = \frac{t}{\sqrt{1+t^2}} \] And since \( \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - \left(\frac{t}{\sqrt{1+t^2}}\right)^2} = \frac{1}{\sqrt{1+t^2}} \). 6. **Final expression for \(\frac{dy}{dx}\)**: Substitute these into the expression: \[ \frac{dy}{dx} = \frac{\frac{t}{\sqrt{1+t^2}}}{t \cdot \frac{1}{\sqrt{1+t^2}}} = 1 \] ### Final Answer: \[ \frac{dy}{dx} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If tany = (2t)/(1-t^2) and sin x = (2t)/(1+t^2) then (dy)/(dx) =_____

If x=sin^(-1)(3t-4t^(3)) and y=cos^(-1)sqrt(1-t^(2)) then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the value of (dy)/(dx) is

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is

If x=tan ((1)/(2) sin ^(-1)((2t)/( 1+t^(2))) +(1)/(2)cos ^(-1) ((1-t^(2))/( 1+t^(2)))), then y= (2t)/( 1-t^(2)), then (dy)/(dx)=

If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))) , then (dy)/(dx) is equal to

TARGET PUBLICATION-DIFFERENTIATION -HIGHER ORDER DERIVATIVES
  1. If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))), then (dy)/(dx...

    Text Solution

    |

  2. If cos x =1/sqrt(1+t^(2)), and sin y = t/sqrt(1+t^(2)), then (dy)/(dx)...

    Text Solution

    |

  3. Differential coefficient of tan^(-1)sqrt((1-x^2)/(1+x^2)) w.r.t. cos^(...

    Text Solution

    |

  4. If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), then (dy)/(dx) is equal...

    Text Solution

    |

  5. If y=sin(2 sin^(-1)x), then (dy)/(dx)=

    Text Solution

    |

  6. The derivative of tan^(-1)[(sin x)/(1+ cosx)] with respect to tan^(-1)...

    Text Solution

    |

  7. if x=a cos^(4) theta, y= a sin^(4) theta, "then" (dy)/(dx)"at" theta=(...

    Text Solution

    |

  8. The derivative of sec^(-1)(1/(2x^2+1)) with respect to sqrt(1+3x) at x...

    Text Solution

    |

  9. If x=sin tcos 2t,y=cos tsin 2t ,then " at " t= (pi)/(4) ,(dy)/(dx)

    Text Solution

    |

  10. The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)...

    Text Solution

    |

  11. If : y=cos^(2)((3x)/(2))-sin^(2)((3x)/(2))," then: "(d^(2)y)/(dx^(2))=

    Text Solution

    |

  12. If x=t^(2) and y=t^(3)+1, then (d^(2)y)/(dx^(2)) is

    Text Solution

    |

  13. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  14. If x=log t, t gt 0 and y=1/t, then (d^(2)y)/(dx^(2)), is

    Text Solution

    |

  15. If y = 1 - x +(x^(2))/(2!) - (x^(3))/(3!) + (x^(4))/(4!) - ..., " the...

    Text Solution

    |

  16. Let f be a function defined for every x, such that f''=-f, f(0)=0,f'(0...

    Text Solution

    |

  17. If e^y\ (x+1)=1 , then (d^(2)y)/(dx^(2))= .

    Text Solution

    |

  18. If y=ax^(5)+(b)/(x^(4))," then "(d^(2)y)/(dx^(2))=

    Text Solution

    |

  19. If y=a x^(n+1)+b x^(-n),t h e n x^2(d^2y)/(dx^2) is equal to

    Text Solution

    |

  20. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |