Home
Class 12
MATHS
Let f be a function defined for every x,...

Let f be a function defined for every x, such that `f''=-f`, f(0)=0,f'(0) =1 then f(x) is equal to

A

tan x

B

`e^(x)-1`

C

sin x

D

2 sin x

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

Let f be a twice differentiable function defined on R such that f(0) = 1, f'(0) = 2 and f '(x) ne 0 for all x in R . If |[f(x)" "f'(x)], [f'(x)" "f''(x)]|= 0 , for all x in R , then the value of f(1) lies in the interval:

Let a function f(x) be such that f"(x)=f'(x)+e^(x)&f(0)=0,f'(0)=1 then find the value of ln(((f(2))^(2))/(4))

Let f(x) be a function such that,f(0)=f'(0)=0,f''(x)=sec^(4)x+4 then the function is

Let f be a differentiable function defined on R such that f(0) = -3 . If f'(x) le 5 for all x then

Property 7: Let f(x) be a continuous function of x defined on [0;a] such that f(a-x)=f(x) then int_(0)^(a)xf(x)dx=(a)/(2)int_(0)^(a)f(x)dx

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let f:R rarr R be a function defined by f(x)=|x] for all x in R and let A=[0,1) then f^(-1)(A) equals

Let f(x) be a function such that f'(a) ne 0 . Then , at x=a, f(x)

Let f (x) be function defined on [0,1] such that f (1)=0 and for any a in (0,1], int _(0)^(a) f (x) dx - int _(a)^(1) f (x) dx =2 f (a) +3a +b where b is constant. int _(0)^(1) f (x) dx =

TARGET PUBLICATION-DIFFERENTIATION -HIGHER ORDER DERIVATIVES
  1. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  2. If x=log t, t gt 0 and y=1/t, then (d^(2)y)/(dx^(2)), is

    Text Solution

    |

  3. If y = 1 - x +(x^(2))/(2!) - (x^(3))/(3!) + (x^(4))/(4!) - ..., " the...

    Text Solution

    |

  4. Let f be a function defined for every x, such that f''=-f, f(0)=0,f'(0...

    Text Solution

    |

  5. If e^y\ (x+1)=1 , then (d^(2)y)/(dx^(2))= .

    Text Solution

    |

  6. If y=ax^(5)+(b)/(x^(4))," then "(d^(2)y)/(dx^(2))=

    Text Solution

    |

  7. If y=a x^(n+1)+b x^(-n),t h e n x^2(d^2y)/(dx^2) is equal to

    Text Solution

    |

  8. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |

  9. If y=a^(x) b^(2x-1) ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  10. If y=log(x+sqrt(x^(2) +a^(2))), then (d^(2)y)/(dx^(2)), is equal to

    Text Solution

    |

  11. If y=x^(2)+2x+3," then "(d^(2)x)/(dy^(2))

    Text Solution

    |

  12. If y=x+e^x , then (d^2x)/(dy^2) is equal to

    Text Solution

    |

  13. "If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

    Text Solution

    |

  14. If y=e^(2x), then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

    Text Solution

    |

  15. (d^(2))/(dx^(2)(2 cos x cos 3x) is equal to

    Text Solution

    |

  16. (d^(2)x)/(dy^(2))=

    Text Solution

    |

  17. If x^(2)/a^(2) + y^(2)/b^(2)=1, then (d^(2)y)/(dx^(2)) is

    Text Solution

    |

  18. If x=f(t) and y=g(t), then (d^2y)/(dx^2) is equal to

    Text Solution

    |

  19. If y=(cos x - sin x)/(cos x + sinx), then ((d^(2)y)/(dx^(2)))/((dy)/(d...

    Text Solution

    |

  20. If y=cos(log x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

    Text Solution

    |