Home
Class 12
MATHS
If y=e^(2x), then (d^(2)y)/(dx^(2)).(d^(...

If `y=e^(2x)`, then `(d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2))` is equal to

A

`e^(-2x)`

B

`-2e^(-2x)`

C

`2e^(-2x)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \((\frac{d^2y}{dx^2}) \cdot (\frac{d^2x}{dy^2})\) given that \(y = e^{2x}\). ### Step 1: Find \(\frac{dy}{dx}\) Given \(y = e^{2x}\), we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}(e^{2x}) = 2e^{2x} \] **Hint:** Use the chain rule for differentiation when the exponent is a function of \(x\). ### Step 2: Find \(\frac{d^2y}{dx^2}\) Next, we differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(2e^{2x}) = 2 \cdot \frac{d}{dx}(e^{2x}) = 2 \cdot 2e^{2x} = 4e^{2x} \] **Hint:** Differentiate again to find the second derivative, applying the chain rule once more. ### Step 3: Find \(\frac{dx}{dy}\) To find \(\frac{dx}{dy}\), we use the relationship: \[ \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{2e^{2x}} \] **Hint:** The derivative \(\frac{dx}{dy}\) is the reciprocal of \(\frac{dy}{dx}\). ### Step 4: Find \(\frac{d^2x}{dy^2}\) Now, we differentiate \(\frac{dx}{dy}\) with respect to \(y\) to find \(\frac{d^2x}{dy^2}\): \[ \frac{d^2x}{dy^2} = \frac{d}{dy}\left(\frac{1}{2e^{2x}}\right) \] Using the chain rule: \[ \frac{d^2x}{dy^2} = -\frac{1}{(2e^{2x})^2} \cdot \frac{d(2e^{2x})}{dy} \] Now, since \(\frac{dy}{dx} = 2e^{2x}\), we can find \(\frac{d(2e^{2x})}{dy}\): \[ \frac{d(2e^{2x})}{dy} = \frac{d(2e^{2x})}{dx} \cdot \frac{dx}{dy} = 4e^{2x} \cdot \frac{1}{2e^{2x}} = 2 \] Thus, \[ \frac{d^2x}{dy^2} = -\frac{1}{(2e^{2x})^2} \cdot 2 = -\frac{2}{4e^{4x}} = -\frac{1}{2e^{4x}} \] **Hint:** When differentiating with respect to \(y\), remember to use the chain rule and the reciprocal relationship between derivatives. ### Step 5: Calculate \((\frac{d^2y}{dx^2}) \cdot (\frac{d^2x}{dy^2})\) Now we can substitute our results into the expression: \[ \frac{d^2y}{dx^2} \cdot \frac{d^2x}{dy^2} = (4e^{2x}) \cdot \left(-\frac{1}{2e^{4x}}\right) \] Simplifying this gives: \[ = -\frac{4e^{2x}}{2e^{4x}} = -\frac{4}{2e^{2x}} = -\frac{2}{e^{2x}} \] ### Final Answer: \[ \frac{d^2y}{dx^2} \cdot \frac{d^2x}{dy^2} = -\frac{2}{e^{2x}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y = e^(x) sin x then (d^(2)y)/(dx^(2)) =

If y=x+e^(x), find (d^(2)x)/(dy^(2))

If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

TARGET PUBLICATION-DIFFERENTIATION -HIGHER ORDER DERIVATIVES
  1. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  2. If x=log t, t gt 0 and y=1/t, then (d^(2)y)/(dx^(2)), is

    Text Solution

    |

  3. If y = 1 - x +(x^(2))/(2!) - (x^(3))/(3!) + (x^(4))/(4!) - ..., " the...

    Text Solution

    |

  4. Let f be a function defined for every x, such that f''=-f, f(0)=0,f'(0...

    Text Solution

    |

  5. If e^y\ (x+1)=1 , then (d^(2)y)/(dx^(2))= .

    Text Solution

    |

  6. If y=ax^(5)+(b)/(x^(4))," then "(d^(2)y)/(dx^(2))=

    Text Solution

    |

  7. If y=a x^(n+1)+b x^(-n),t h e n x^2(d^2y)/(dx^2) is equal to

    Text Solution

    |

  8. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |

  9. If y=a^(x) b^(2x-1) ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  10. If y=log(x+sqrt(x^(2) +a^(2))), then (d^(2)y)/(dx^(2)), is equal to

    Text Solution

    |

  11. If y=x^(2)+2x+3," then "(d^(2)x)/(dy^(2))

    Text Solution

    |

  12. If y=x+e^x , then (d^2x)/(dy^2) is equal to

    Text Solution

    |

  13. "If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

    Text Solution

    |

  14. If y=e^(2x), then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

    Text Solution

    |

  15. (d^(2))/(dx^(2)(2 cos x cos 3x) is equal to

    Text Solution

    |

  16. (d^(2)x)/(dy^(2))=

    Text Solution

    |

  17. If x^(2)/a^(2) + y^(2)/b^(2)=1, then (d^(2)y)/(dx^(2)) is

    Text Solution

    |

  18. If x=f(t) and y=g(t), then (d^2y)/(dx^2) is equal to

    Text Solution

    |

  19. If y=(cos x - sin x)/(cos x + sinx), then ((d^(2)y)/(dx^(2)))/((dy)/(d...

    Text Solution

    |

  20. If y=cos(log x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

    Text Solution

    |