Home
Class 12
MATHS
If y=cos(log x), then x^(2)(d^(2)y)/(dx^...

If `y=cos(log x)`, then `x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y` is equal to

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y \) when \( y = \cos(\log x) \). ### Step 1: Differentiate \( y \) with respect to \( x \) Given: \[ y = \cos(\log x) \] Using the chain rule to differentiate: \[ \frac{dy}{dx} = -\sin(\log x) \cdot \frac{d}{dx}(\log x) \] Since \( \frac{d}{dx}(\log x) = \frac{1}{x} \), we have: \[ \frac{dy}{dx} = -\sin(\log x) \cdot \frac{1}{x} = -\frac{\sin(\log x)}{x} \] ### Step 2: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{\sin(\log x)}{x}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = -\left(\frac{x \cdot \frac{d}{dx}(\sin(\log x)) - \sin(\log x) \cdot \frac{d}{dx}(x)}{x^2}\right) \] Calculating \( \frac{d}{dx}(\sin(\log x)) \): \[ \frac{d}{dx}(\sin(\log x)) = \cos(\log x) \cdot \frac{1}{x} = \frac{\cos(\log x)}{x} \] Substituting back: \[ \frac{d^2y}{dx^2} = -\left(\frac{x \cdot \frac{\cos(\log x)}{x} - \sin(\log x) \cdot 1}{x^2}\right) = -\left(\frac{\cos(\log x) - \sin(\log x)}{x^2}\right) \] Thus, \[ \frac{d^2y}{dx^2} = -\frac{\cos(\log x) - \sin(\log x)}{x^2} \] ### Step 3: Substitute \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \) into the expression Now we substitute \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \) into the expression: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y \] Substituting: \[ x^2 \left(-\frac{\cos(\log x) - \sin(\log x)}{x^2}\right) + x \left(-\frac{\sin(\log x)}{x}\right) + \cos(\log x) \] This simplifies to: \[ -(\cos(\log x) - \sin(\log x)) - \sin(\log x) + \cos(\log x) \] Combining like terms: \[ -\cos(\log x) + \sin(\log x) - \sin(\log x) + \cos(\log x) = 0 \] ### Final Result Thus, we find that: \[ x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=log (log 2x) ,then x ( d^(2)y)/(dx^(2))+(dy)/(dx) =

If y=sin((log)_e x) , then x^2\ (d^2y)/(dx^2)+x(dy)/(dx) is equal to.......

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=cos (log x) ,then (d^(2)y)/(dx^(2))=

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y =3 cos (log x) + 4 sin (log x), then x ^(2) (d ^(2) y )/( dx ^(2)) + x (dy)/(dx) =

TARGET PUBLICATION-DIFFERENTIATION -HIGHER ORDER DERIVATIVES
  1. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  2. If x=log t, t gt 0 and y=1/t, then (d^(2)y)/(dx^(2)), is

    Text Solution

    |

  3. If y = 1 - x +(x^(2))/(2!) - (x^(3))/(3!) + (x^(4))/(4!) - ..., " the...

    Text Solution

    |

  4. Let f be a function defined for every x, such that f''=-f, f(0)=0,f'(0...

    Text Solution

    |

  5. If e^y\ (x+1)=1 , then (d^(2)y)/(dx^(2))= .

    Text Solution

    |

  6. If y=ax^(5)+(b)/(x^(4))," then "(d^(2)y)/(dx^(2))=

    Text Solution

    |

  7. If y=a x^(n+1)+b x^(-n),t h e n x^2(d^2y)/(dx^2) is equal to

    Text Solution

    |

  8. If y=a cos ( log x )+ bsin (log x) where a ,b are parameters ,then ...

    Text Solution

    |

  9. If y=a^(x) b^(2x-1) ,then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  10. If y=log(x+sqrt(x^(2) +a^(2))), then (d^(2)y)/(dx^(2)), is equal to

    Text Solution

    |

  11. If y=x^(2)+2x+3," then "(d^(2)x)/(dy^(2))

    Text Solution

    |

  12. If y=x+e^x , then (d^2x)/(dy^2) is equal to

    Text Solution

    |

  13. "If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

    Text Solution

    |

  14. If y=e^(2x), then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to

    Text Solution

    |

  15. (d^(2))/(dx^(2)(2 cos x cos 3x) is equal to

    Text Solution

    |

  16. (d^(2)x)/(dy^(2))=

    Text Solution

    |

  17. If x^(2)/a^(2) + y^(2)/b^(2)=1, then (d^(2)y)/(dx^(2)) is

    Text Solution

    |

  18. If x=f(t) and y=g(t), then (d^2y)/(dx^2) is equal to

    Text Solution

    |

  19. If y=(cos x - sin x)/(cos x + sinx), then ((d^(2)y)/(dx^(2)))/((dy)/(d...

    Text Solution

    |

  20. If y=cos(log x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

    Text Solution

    |