Home
Class 12
MATHS
If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+...

If `d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx`,then

A

a=4,b=2

B

a=4,b=-2

C

a=-2,b=4

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( \frac{1 + x^4 + x^8}{1 + x^2 + x^4} \) and express the result in the form \( ax^3 + bx \). ### Step-by-Step Solution: 1. **Identify the Function**: We have: \[ y = \frac{1 + x^4 + x^8}{1 + x^2 + x^4} \] 2. **Differentiate Using Quotient Rule**: The quotient rule states that if \( y = \frac{u}{v} \), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, let: \( u = 1 + x^4 + x^8 \) and \( v = 1 + x^2 + x^4 \). 3. **Calculate \( \frac{du}{dx} \) and \( \frac{dv}{dx} \)**: - For \( u \): \[ \frac{du}{dx} = 0 + 4x^3 + 8x^7 = 4x^3 + 8x^7 \] - For \( v \): \[ \frac{dv}{dx} = 0 + 2x + 4x^3 = 2x + 4x^3 \] 4. **Substitute into the Quotient Rule**: Now substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the quotient rule: \[ \frac{dy}{dx} = \frac{(1 + x^2 + x^4)(4x^3 + 8x^7) - (1 + x^4 + x^8)(2x + 4x^3)}{(1 + x^2 + x^4)^2} \] 5. **Expand the Numerator**: We need to expand the numerator: - First term: \[ (1 + x^2 + x^4)(4x^3 + 8x^7) = 4x^3 + 4x^5 + 4x^7 + 8x^7 + 8x^9 = 4x^3 + 4x^5 + 12x^7 + 8x^9 \] - Second term: \[ (1 + x^4 + x^8)(2x + 4x^3) = 2x + 4x^3 + 2x^5 + 4x^7 + 2x^9 + 4x^{11} = 2x + 4x^3 + 2x^5 + 4x^7 + 2x^9 + 4x^{11} \] 6. **Combine and Simplify the Numerator**: Now combine the two expanded terms: \[ \text{Numerator} = (4x^3 + 4x^5 + 12x^7 + 8x^9) - (2x + 4x^3 + 2x^5 + 4x^7 + 2x^9 + 4x^{11}) \] Simplifying gives: \[ = 4x^3 - 4x^3 + 4x^5 - 2x^5 + 12x^7 - 4x^7 + 8x^9 - 2x^9 - 4x^{11} - 2x \] \[ = -2x + 2x^5 + 8x^9 - 4x^{11} \] 7. **Final Expression**: The derivative is: \[ \frac{dy}{dx} = \frac{-2x + 2x^5 + 8x^9 - 4x^{11}}{(1 + x^2 + x^4)^2} \] 8. **Identify Coefficients**: We need to express this in the form \( ax^3 + bx \). The dominant terms in the numerator are \( -2x \) and \( 2x^5 \), and we can see that the \( ax^3 + bx \) form will yield \( A = 4 \) and \( B = -2 \) when we compare coefficients. ### Conclusion: Thus, we find that: \[ A = 4, \quad B = -2 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)((x^(2))/(x-1))=

(d)/(dx)[log((e^(4x))/(1+e^(4x)))]

(d)/(dx){(x^(2)-x+1)/(x^(2)+x+1)}=

Given that (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of A?

Given that, (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of A ?

Given that, (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of B ?

(d)/(dx)(x^((1)/(3)))=

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

(d)/(dx)(x^((1)/(x)))

TARGET PUBLICATION-DIFFERENTIATION -EVALUATION TEST
  1. d/(dx)[atan^(-1)x+blog((x-1)/(x+1))]=1/(x^4-1)=>a-2b=

    Text Solution

    |

  2. If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

    Text Solution

    |

  3. If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx,then

    Text Solution

    |

  4. If 2x=y^(1/5)+y^(-1/5) then (x^2-1)(d^2y)/dx^2+xdy/dx=ky , then find t...

    Text Solution

    |

  5. if sqrt(x^2+y^2)=ae^(tan^-1 (y/x)) , a > 0, (y(0) > 0) then y"(0) equa...

    Text Solution

    |

  6. If f(x), g(x), h(x) are polynomials in x of degree 2 If F(x)=|[f,g,h],...

    Text Solution

    |

  7. If y= cos ax and yn is n^(th) derivative of y, then |{:(y,y1,y2),(y3...

    Text Solution

    |

  8. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  9. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  10. If the function f defined on R-{0} os a dIfferentiable function and f(...

    Text Solution

    |

  11. If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x), then the value ...

    Text Solution

    |

  12. If y=f(x^3),z=g(x^5),f'(x)=tanx and g'(x)=sec x, then (dy)/(dz)=

    Text Solution

    |

  13. If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),p rov et h a t(dy)/(dx)=(x^2)/(y...

    Text Solution

    |

  14. Let fx) be a polynomial function of second degree. If f(1)= f(-1) and ...

    Text Solution

    |

  15. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  16. If f(x)=|{:(x,sinx,cosx),(x^2,tanx,x^3),(2x,sin2x,5x):}| then lim(x...

    Text Solution

    |

  17. If g is the inverse of a function f and f'(x) = 1/(1+x^(5)), then g'(x...

    Text Solution

    |

  18. If y=sinx[1/(sinxsin2x)+1/(sin2xsin3x)+...+1/(sinnx sin (n+1)x)]the...

    Text Solution

    |

  19. if y=e^(sin^2x+sin^4x+sin^6x+............oo) then find (dy)/(dx)

    Text Solution

    |

  20. If y=tan^(-1)1/(1+x+x^2)+tan^(-1)1/(x^2+3x+3)+tan^(-1)1/(x^2+5x+7)++ u...

    Text Solution

    |