Home
Class 12
MATHS
if cos alpha = sin beta , and alpha = (5...

if `cos alpha = sin beta` , and `alpha = (5pi)/6`, which could be a value of `beta` ?

A

`-pi/6`

B

`pi/6`

C

`-pi/3`

D

`pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos \alpha = \sin \beta \) and \( \alpha = \frac{5\pi}{6} \), we can follow these steps: ### Step 1: Find \( \cos \alpha \) Given \( \alpha = \frac{5\pi}{6} \), we need to find \( \cos \left( \frac{5\pi}{6} \right) \). ### Step 2: Use the cosine identity We can express \( \frac{5\pi}{6} \) as: \[ \frac{5\pi}{6} = \pi - \frac{\pi}{6} \] Using the cosine identity \( \cos(\pi - x) = -\cos(x) \), we have: \[ \cos\left(\frac{5\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) \] ### Step 3: Calculate \( \cos\left(\frac{\pi}{6}\right) \) The value of \( \cos\left(\frac{\pi}{6}\right) \) is: \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ \cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2} \] ### Step 4: Set up the equation Since \( \cos \alpha = \sin \beta \), we can write: \[ \sin \beta = -\frac{\sqrt{3}}{2} \] ### Step 5: Find possible values of \( \beta \) The sine function is negative in the third and fourth quadrants. The angles where \( \sin \beta = -\frac{\sqrt{3}}{2} \) are: \[ \beta = -\frac{\pi}{3} \quad \text{(in the fourth quadrant)} \] and \[ \beta = \frac{4\pi}{3} \quad \text{(in the third quadrant)} \] ### Step 6: Identify the correct option From the options provided, \( -\frac{\pi}{3} \) is one of the possible values of \( \beta \). ### Final Answer Thus, the value of \( \beta \) could be: \[ \beta = -\frac{\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • GETTING STARTED

    ENGLISH SAT|Exercise MCQs|8 Videos
  • FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|18 Videos
  • HEART OF ALGEBRA

    ENGLISH SAT|Exercise PRACTICE TEST|14 Videos

Similar Questions

Explore conceptually related problems

Let f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| The value of l=int_(0)^(pi//2)e^(beta)(f(0,0)+f((pi)/(2),beta)+f((3pi)/(2),(pi)/(2)-beta))dbeta is

If 2 sin 2alpha= | tan beta+ cot beta |alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is

Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbeta = -21/65 and cos alpha+cos beta = -27/65 , then the value of cos(alpha-beta)/(2) is

Find the value of sin (alpha + beta) , cos (alpha + beta) , and tan (alpha + beta), given sin alpha = (3)/(5) , cos beta = (5)/(13), alpha and beta in Quadrant I.

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

If sin alpha + sin beta = a and cos alpha + cos beta = b, prove that : cos (alpha-beta) = 1/2 (a^2 + b^2 -2)

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .