Home
Class 12
MATHS
If f(x)=(ax)/b and g(x)=(cx^2)/a , then ...

If `f(x)=(ax)/b` and `g(x)=(cx^2)/a` , then g(f(a)) equals

A

`a^2/b`

B

`(a^2 c)/b`

C

`(a^2c)/b^2`

D

`(ca^3)/b^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( g(f(a)) \) given the functions \( f(x) = \frac{ax}{b} \) and \( g(x) = \frac{cx^2}{a} \). ### Step-by-step Solution: 1. **Find \( f(a) \)**: \[ f(a) = \frac{a \cdot a}{b} = \frac{a^2}{b} \] 2. **Substitute \( f(a) \) into \( g(x) \)**: Now we need to find \( g(f(a)) \), which is \( g\left(\frac{a^2}{b}\right) \). 3. **Use the definition of \( g(x) \)**: \[ g\left(\frac{a^2}{b}\right) = \frac{c\left(\frac{a^2}{b}\right)^2}{a} \] 4. **Calculate \( \left(\frac{a^2}{b}\right)^2 \)**: \[ \left(\frac{a^2}{b}\right)^2 = \frac{a^4}{b^2} \] 5. **Substitute back into \( g(f(a)) \)**: \[ g\left(\frac{a^2}{b}\right) = \frac{c \cdot \frac{a^4}{b^2}}{a} \] 6. **Simplify the expression**: \[ g\left(\frac{a^2}{b}\right) = \frac{c \cdot a^4}{b^2 \cdot a} = \frac{c \cdot a^3}{b^2} \] Thus, the final answer is: \[ g(f(a)) = \frac{ca^3}{b^2} \] ### Final Answer: \[ g(f(a)) = \frac{ca^3}{b^2} \]
Promotional Banner

Topper's Solved these Questions

  • HEART OF ALGEBRA

    ENGLISH SAT|Exercise PRACTICE TEST|14 Videos
  • GETTING STARTED

    ENGLISH SAT|Exercise MCQs|8 Videos
  • HIGHER DEGREE POLYNOMIALS

    ENGLISH SAT|Exercise EXERCISES|6 Videos

Similar Questions

Explore conceptually related problems

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to (A) f(a) = g(c ) (B) f(b) = g(b) (C) f(d) = g(b) (D) f(c ) = g(a)

If f(x)=e^(x) and g(x)=f(x)+f^(-1) , what does g(2) equal?

If f(x)=|x-2| and g(x)=f(f(x)) then g'(x)=

If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If f(x) =4x^2 and g(x) =f(sin x)+f(cos x), then g (23^(@)) is

If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to