Home
Class 12
MATHS
Prove that y=(4sintheta)/((2+costheta) )...

Prove that `y=(4sintheta)/((2+costheta) )-theta`is an increasing function of `theta`in `[0,pi/2]`.

Text Solution

AI Generated Solution

To prove that the function \( y = \frac{4 \sin \theta}{2 + \cos \theta} - \theta \) is an increasing function of \( \theta \) in the interval \( [0, \frac{\pi}{2}] \), we need to show that the derivative \( y' \) is greater than or equal to 0 for all \( \theta \) in this interval. ### Step 1: Differentiate the function We start by differentiating \( y \): \[ y' = \frac{d}{d\theta} \left( \frac{4 \sin \theta}{2 + \cos \theta} \right) - \frac{d}{d\theta}(\theta) \] Using the quotient rule for differentiation, where \( u = 4 \sin \theta \) and \( v = 2 + \cos \theta \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    NCERT|Exercise EXERCISE 6.1|18 Videos
  • APPLICATION OF DERIVATIVES

    NCERT|Exercise EXERCISE 6.5|29 Videos
  • APPLICATION OF INTEGRALS

    NCERT|Exercise EXERCISE 8.2|7 Videos

Similar Questions

Explore conceptually related problems

Prove that y=(4sin theta)/(2+cos theta)-theta is an increasing function of theta in[0,(pi)/(2)]

Prove that y=(4sin theta)/((2+sin theta))-theta is an increasing function of theta in [0, (pi)/(2)]

Knowledge Check

  • (sintheta+sin2theta)/(1+costheta+cos2theta) =

    A
    `(1)/(2)tantheta`
    B
    `(1)/(2)cottheta`
    C
    `tantheta`
    D
    `cottheta`
  • (sintheta+sin2theta)/(1+costheta+cos2theta)=?

    A
    `tantheta`
    B
    `sintheta`
    C
    `costheta`
    D
    `tan^(2)theta`
  • Similar Questions

    Explore conceptually related problems

    Prove that f(theta)=(4sin theta)/(2+cos theta)-theta is an increasing function of theta in [0,(pi)/(2)]

    Prove that y=(4sin theta)/((2+cos theta))-theta is an increasing function in [0,(pi)/(2)]

    Prove that sintheta/(1-costheta)=cosectheta+cot theta

    Prove that sintheta (1 + Costheta) is the greatest at theta=pi/3

    Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

    Prove that : (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta)-tantheta