Home
Class 12
MATHS
Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x...

Let `f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x` for all `x in (-pi/2,pi/2)` . Then the correct expression (s) is (are) (a) `int_0^(pi/4)xf(x)dx=1/(12)` (b)`int_0^(pi/4)f(x)dx=0` (c)`int_0^(pi/4)xf(x)=1/6` (d) `int_0^(pi/4)f(x)dx=1/(12)`

Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=7 tan^(8) x +7 tan^(4) x-3 tan^(2)x for all x in(-(pi)/(2),(pi)/(2)) . Then the correct expression (s) is are

Let f(x)=7tan^(8)x+7tan^(6)x-3tan^(4)x-3tan^(2)x for all x in(-(pi)/(2),(pi)/(2))* Then the correct expression (s) is (are) (a) int_(0)^((pi)/(4))xf(x)dx=(1)/(12) (b) int_(0)^((pi)/(4))f(x)dx=0( c) int_(0)^((1)/(4))xf(x)=(1)/(6)(d)int_(0)^((pi)/(4))f(x)dx=(1)/(12)

Let f (x) = 7 tan ^(8) x + 7 tan ^(6) x - 3 tan ^(4) x - 3 tan ^(2) x for all x in (-(pi)/(2), (pi)/(2)). Then the correct expression(s) is (are).

int_{0}^(pi/4)|tan x|dx

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

int_(0)^(pi//4) tan x dx

(i) int_0^(pi//4) tan x dx (ii) int_(pi//4)^(pi//2) cot x dx

int_0^(pi/4) 2 tan^3 x dx=1-log 2

int_(0)^(pi//4)(tan^(3)x)/((1+cos2x))dx