Home
Class 12
MATHS
let alpha(a) and beta(a) be the roots of...

let `alpha(a)` and `beta(a)` be the roots of the equation `((1+a)^(1/3)-1)x^2 +((1+a)^(1/2)-1)x+((1+a)^(1/6)-1)=0` where `agt-1` then, `lim_(a->0^+)alpha(a)` and `lim_(a->0^+)beta(a)`

Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

let alpha(a) and beta(a) be the roots of the equation ((1+a)^((1)/(3))-1)x^(2)+((1+a)^((1)/(2))-1)x+((1+a)^((1)/(6))-1)=0 where a>-1 then,lim_(a rarr0^(+))alpha(a) and lim_(a rarr0^(+))beta(a)

Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

Let alpha(p) and beta(p) be the roots of the equation (root(6)(1+p)-1)x^(2)+(root(3)(1+p)+1)x+(root(9)(1+p)-1)=0 where p>-1 then lim_(p rarr0^(+))[alpha(p)+beta(p)] is equal to

If alpha and beta are the roots of the equation 3x^(2)+8x+2=0 then ((1)/(alpha)+(1)/(beta))=?

If alpha and beta are the roots of the equation 4x^(2)+3x+7=0, then (1)/(alpha)+(1)/(beta)=

If alpha,beta are the roots of the equation x^(2)-p(x+1)-c=0, then (alpha+1)(beta+1)=

if alpha and beta are the roots of the equation x^(2)+x+1=0 then alpha^(28)+beta^(28)=(A)1(B)-1(C)0(D)2

If alpha and beta be the roots of the equation x^2-1=0 , then show that. alpha+beta=(1)/(alpha)+(1)/(beta)