Home
Class 12
MATHS
Consider the line L1 :(x+1)/3=(y+2)/1=...

Consider the line `L_1 :(x+1)/3=(y+2)/1=(z+1)/2,L_2 : (x-2)/1=(y+2)/2=(z-3)/3` The shortest distance between `L_1 and L_2` is

Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

Consider the line L1=(x+1)/3=(y+2)/1=(z+1)/2 L2=(x-2)/1=(y+2)/2=(z-3)/3 The shortest distance between L_1 and L_2 is

A paragraph has been given. Based upon this paragraph, 3 multiple choice question have to be answered. Each question has 4 choices a,b,c and d out of which ONLYONE is correct. Consider the L_1:(x+1)/3=(y+2)/1=(z+1)/2 and L_2:(x-2)/1=(y+2)/2=(z-3)/3 The shortest distance betwen L_1 and L_2 is (A) 0 (B) 17/sqrt(3) (C) 41/(5(3) (D) 17/sqrt(75)

Read the following passage and answer the questions. Consider the lines L_(1) : (x+1)/(3)=(y+2)/(1)=(z+1)/(2) L_(2) : (x-2)/(1)=(y+2)/(2)=(z-3)/(3) Q. The shortest distance between L_(1) and L_(2) is

Read the following passage and answer the questions. Consider the lines L_(1) : (x+1)/(3)=(y+2)/(1)=(z+1)/(2) L_(2) : (x-2)/(1)=(y+2)/(2)=(z-3)/(3) Q. The distance of the point (1, 1, 1) from the plane passing through the point (-1, -2, -1) and whose normal is perpendicular to both the lines L_(1) and L_(2) , is

Read the following passage and answer the questions. Consider the lines L_(1):(x+1)/(3)=(y+2)/(1)=(z+1)/(2),L_(2):(x-2)/(1)=(y+2)/(2)=(z-3)/(3) The distance of the point (1,1,1) from the plane passing throught the point (-1,-2,-1) and whose normal is perpendicular to both the lines L_(1) and L_(2) , is

Read the following passage and answer the questions. Consider the lines L_(1) : (x+1)/(3)=(y+2)/(1)=(z+1)/(2) L_(2) : (x-2)/(1)=(y+2)/(2)=(z-3)/(3) Q. The unit vector perpendicular to both L-(1) and L_(2) is

Read the following passage and answer the questions. Consider the lines L_(1):(x+1)/(3)=(y+2)/(1)=(z+1)/(2),L_(2):(x-2)/(1)=(y+2)/(2)=(z-3)/(3) The unit vector perpendicualr to both L_(1) and L_(2) is

cosider the lines, L1=(x+1)/3=(y+2)/1=(z+2)/2 L2=(x-2)/1=(y+2)/2=(z-3)/3 The distance of the point (1, 1, 1) from the plane passing through the point (-1, -2, -1) and whose normal is perpendicular to both the lines L_1 and L_2 is