Home
Class 12
MATHS
lim(x->pi/4)(int2^(sec^2x)f(t)dt)/(x^2-(...

`lim_(x->pi/4)(int_2^(sec^2x)f(t)dt)/(x^2-(pi^2)/16)` equals :

Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

(lim)_(x->4)(int2sec^2\ f(t)dt)/(x^2-(pi^2)/(16)) equals a. 8/pif(2) b. 2/pif(2) c. 2/pif(1/2) d. 4f(2)

lim_(x rarr(pi)/(4))(int_(2)^(sec^(2)x)f(t)dt)/(x^(2)-(pi^(2))/(16)) equal :

lim_(x rarr(pi)/(4))(int_(2)^(sec^(2)x)f(t)dt)/(x^(2)-(pi^(2))/(16)) equals:

The value of lim _(x to pi/4) (pi/4 int_2^(sec^2x)f(x)dx)/(x^2-pi^2/16) is

Let f: R to R be a continuous function. Then lim_(x to pi//4) (pi/4 int_2^(sec^2x) f(x)dx)/(x^2 - pi^2/16) is equal to :

Let f: R to R be a continuous function. Then lim_(x to pi//4) (pi/4 int_2^(sec^2x) f(x)dx)/(x^2 - pi^2/16) is equal to :

The value of lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16)) is:

lim_(x to oo)(int_0^(2x) te^(t^(2))dt)/(e^(4x^(2))) equals

lim_(pi//4)(overset(sec^(2)x)underset(2)intf(l)dt)/(x^(2)-(pi^(2))/(16)) equals