Home
Class 12
MATHS
The maximum value of the function f(x)=2...

The maximum value of the function `f(x)=2x^3-15 x^2+36 x-48` on the set `A={x|x^2|20lt=9x}` is______.

Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set A={x|x^(2)|20<=9x} is

The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the set a={x|x^(2)+20le9x} is

Find the maximum value of the function f(x)=5+9x-18x^(2)

The minimum value of the function f (x) =x^(3) -3x^(2) -9x+5 is :

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

Maximum value of f(x)=2x^(3)-9x^(2)+24x-15 is

Maximum value of f(x)=x^(3)-9x^(2)+24x-15 is