Home
Class 12
MATHS
If 9^(-2)=((1)/(3))^(x), what is the val...

If `9^(-2)=((1)/(3))^(x)`, what is the value of x?

A

`1`

B

`2`

C

`4`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 9^{-2} = \left(\frac{1}{3}\right)^{x} \), we will follow these steps: ### Step 1: Rewrite \( 9^{-2} \) We know that \( 9 \) can be expressed as \( 3^2 \). Therefore, we can rewrite \( 9^{-2} \) as follows: \[ 9^{-2} = (3^2)^{-2} \] ### Step 2: Apply the power of a power property Using the property of exponents that states \( (a^m)^n = a^{m \cdot n} \), we can simplify: \[ (3^2)^{-2} = 3^{-4} \] ### Step 3: Rewrite \( 3^{-4} \) in terms of \( \frac{1}{3} \) Now, we can express \( 3^{-4} \) as: \[ 3^{-4} = \frac{1}{3^4} \] ### Step 4: Calculate \( 3^4 \) Calculating \( 3^4 \): \[ 3^4 = 81 \] Thus, we have: \[ 3^{-4} = \frac{1}{81} \] ### Step 5: Set the equation Now we can rewrite the original equation: \[ \frac{1}{81} = \left(\frac{1}{3}\right)^{x} \] ### Step 6: Rewrite \( \frac{1}{81} \) in terms of \( \frac{1}{3} \) We can express \( 81 \) as \( 3^4 \): \[ \frac{1}{81} = \frac{1}{3^4} = \left(\frac{1}{3}\right)^{4} \] ### Step 7: Set the exponents equal Now we have: \[ \left(\frac{1}{3}\right)^{4} = \left(\frac{1}{3}\right)^{x} \] Since the bases are the same, we can set the exponents equal to each other: \[ 4 = x \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • FUN WITH FUNDAMENTALS

    PRINCETON|Exercise Fundamental Drill 2: Calculator- Permitted Section|6 Videos
  • FUN WITH FUNDAMENTALS

    PRINCETON|Exercise Example|6 Videos
  • ARITHMETIC

    PRINCETON|Exercise QUICK QUIZ #11|3 Videos
  • FUNCTIONS AND GRAPHS

    PRINCETON|Exercise Functions and Graphs Drill 2: Calculator -Permitted Section|6 Videos

Similar Questions

Explore conceptually related problems

If x^(-(1)/(2))=(1)/(8) , what is the value of x^((2)/(3)) ?

If (3(x-1))/(2)=(9)/(x-2) , what is the value of x?

If 9^(x)-2.3^(x)-3=0 , what is the value of x?

If 9^(x)-2.3^(x)-3=0 , what is the value of x?

if 3x-7=9, what is the value of 6x+5?

If (7)/(12)x-(1)/(3)x=(1)/(2)+(3)/(8) , what is the value of x?

If (5)/(x)=(9)/(x+2) , what is the value of (x)/(3) ?

If 3x-1=x-(7)/(9) , what is the value of 2x+1 ?

If (1)/(x+y) + (1)/(x-y) = 4 and (2)/(x+y) + (3)/(x-y) = 9 what is the value of x ?