Home
Class 12
MATHS
For x>0, lim(x->0) (sinx)^(1/x) +(1/x)^s...

For `x>0, lim_(x->0) (sinx)^(1/x) +(1/x)^sinx` is equal to

Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)|sinx|/x

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

lim_(xrarr0) (sinx)/(x)= ?

For xgt0, lim_(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx} , is

lim_(xto0)(a^(sinx)-1)/(b^(sinx)-1) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

lim_(x to 0) (sin(sinx))/x