Home
Class 12
MATHS
The axis of a parabola is along the line...

The axis of a parabola is along the line `y=x` and the distance of its vertex and focus from the origin are `sqrt(2)` and `2sqrt(2)` , respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is `(x+y)^2=(x-y-2)` `(x-y)^2=(x+y-2)` `(x-y)^2=4(x+y-2)` `(x-y)^2=8(x+y-2)`

Promotional Banner

Topper's Solved these Questions

  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 2|6 Videos
  • JEE (ADVANCED ) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION 3|6 Videos
  • JEE (ADVANCED) 2020

    JEE ADVANCED PREVIOUS YEAR|Exercise SECTION-3|6 Videos

Similar Questions

Explore conceptually related problems

The axis of parabola is along the line y=x and the distance of its vertex and focus from origin are sqrt(2) and 2sqrt(2) respectively.If vertex and focus both lie in the first quadrant,then the equation of the parabola is:

The axis of a parabola is along the line y=x and the distance of its vertex and focus from the origin are sqrt(2) and 2sqrt(2), respectively.If vertex and focus both lie in the first quadrant, then the equation of the parabola is (x+y)^(2)=(x-y-2)(x-y)^(2)=4(x+y-2)(x-y)^(2)=4(x+y-2)(x-y)^(2)=4(x+y-2)(x-y)^(2)=8(x+y-2)

The axis of a parabola is along the line y = x and the distance of its vertex from origin is sqrt2 and that from its focus is 2sqrt2 . If vertex and focus both lie in the first quadrant, then the equation of the parabola is

The axis of a parabola is along the line y = x and its vertex and focus are in the first quadrant at distances sqrt2,2sqrt2 respectively, from the origin. The equation of the parabola, is

Find the vertex of the parabola x^(2)=2(2x+y)

Find the vertex and focus of the given parabola x^(2)+4y=0

A parabola has its vertex and focus in the first quadrant and axis along the line y=x . If the distances of the vertex and focus from the origin are respectively sqrt(2)&2sqrt(2) , then equation of the parabola is x^2+y^2-8x+8y+2x y=16 x^2+y^2-8x-8y+16=2x y (x-y)^2=8(x+y-2) (x+y)^2=(x-y+2)