Home
Class 12
MATHS
If f(x)=(1-sinx)/((pi-2x)^2),when x!=pi...

If `f(x)=(1-sinx)/((pi-2x)^2)`,when `x!=pi/2 ` and `f(pi/2)=lambda,` the `f(x)` will be continuous function at `x=pi/2`,where `lambda=?` (a)`1/8` (b) `1/4` (c) `1/2` (d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) such that the function \( f(x) = \frac{1 - \sin x}{(\pi - 2x)^2} \) is continuous at \( x = \frac{\pi}{2} \), we need to follow these steps: ### Step 1: Check the form of \( f(x) \) at \( x = \frac{\pi}{2} \) We first evaluate \( f(x) \) as \( x \) approaches \( \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \frac{1 - \sin\left(\frac{\pi}{2}\right)}{(\pi - 2\left(\frac{\pi}{2}\right))^2} = \frac{1 - 1}{(0)^2} = \frac{0}{0} \] This is an indeterminate form, so we need to find the limit as \( x \) approaches \( \frac{\pi}{2} \). ### Step 2: Find the limit of \( f(x) \) as \( x \) approaches \( \frac{\pi}{2} \) We compute: \[ \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\pi - 2x)^2} \] Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of the numerator \( 1 - \sin x \) is \( -\cos x \). - The derivative of the denominator \( (\pi - 2x)^2 \) is \( -4(\pi - 2x) \). Now we apply L'Hôpital's Rule: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-4(\pi - 2x)} = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{4(\pi - 2x)} \] ### Step 4: Evaluate the limit again Substituting \( x = \frac{\pi}{2} \): \[ \cos\left(\frac{\pi}{2}\right) = 0 \quad \text{and} \quad \pi - 2\left(\frac{\pi}{2}\right) = 0 \] This again gives us a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 5: Apply L'Hôpital's Rule a second time Differentiate again: - The derivative of the numerator \( \cos x \) is \( -\sin x \). - The derivative of the denominator \( 4(\pi - 2x) \) is \( -8 \). Now we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\sin x}{-8} = \lim_{x \to \frac{\pi}{2}} \frac{\sin x}{8} \] ### Step 6: Evaluate the limit Substituting \( x = \frac{\pi}{2} \): \[ \sin\left(\frac{\pi}{2}\right) = 1 \] Thus, the limit becomes: \[ \frac{1}{8} \] ### Step 7: Set \( \lambda \) equal to the limit For \( f(x) \) to be continuous at \( x = \frac{\pi}{2} \), we need: \[ \lambda = \lim_{x \to \frac{\pi}{2}} f(x) = \frac{1}{8} \] ### Conclusion The value of \( \lambda \) that makes \( f(x) \) continuous at \( x = \frac{\pi}{2} \) is: \[ \lambda = \frac{1}{8} \]

To determine the value of \( \lambda \) such that the function \( f(x) = \frac{1 - \sin x}{(\pi - 2x)^2} \) is continuous at \( x = \frac{\pi}{2} \), we need to follow these steps: ### Step 1: Check the form of \( f(x) \) at \( x = \frac{\pi}{2} \) We first evaluate \( f(x) \) as \( x \) approaches \( \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \frac{1 - \sin\left(\frac{\pi}{2}\right)}{(\pi - 2\left(\frac{\pi}{2}\right))^2} = \frac{1 - 1}{(0)^2} = \frac{0}{0} \] This is an indeterminate form, so we need to find the limit as \( x \) approaches \( \frac{\pi}{2} \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    RD SHARMA|Exercise Solved Examples And Exercises|141 Videos
  • DEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|567 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {((1-sinzx)/(pi-2x), ",", x != pi/2),(lambda, ",", x = pi/2):} , be continuous at x = (pi)/2 , then the value of lambda is

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2

If : f(x) {: ((1-sin x)/(pi-2x)", ... " x != pi//2 ),(=lambda ", ... " x = pi//2):} is continuous at x = pi//2 , then : lambda =

f(x)= (1-sinx+cosx)/(1+sinx+cosx) discontinuous at x=pi . Find f(pi) so that f(x) is continuous x=pi

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

Consider the function f(x)=(1-sinx)/((pi-2x)^(2)) where xne(pi)/(2)andf((pi)/(2))=lambda What is the value of lambda . If the function is continuous at x=(pi)/(2) ?

The function f(x)=(sinx)^(tan^(2)x) is not defined at x=(pi)/(2) . The value of f((pi)/(2)) such that f is continuous at x=(pi)/(2) is

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

Consider the function f(x)=(1-sinx)/((pi-2x)^(2)) where xne(pi)/(2)andf((pi)/(2))=lambda What is underset(xrarr(pi)/(2))limf(x) equal to?

RD SHARMA-CONTINUITY-Solved Examples And Exercises
  1. Show that f(x)=5x-4 , 0< x < 1 f(x)=4x^3-3x , 1< x <2 continuous a...

    Text Solution

    |

  2. If f(x)={asinpi/2(x+1), ,xlt=0(tanx-sinx)/(x^3),x >0 is continuous...

    Text Solution

    |

  3. If f(x)=(1-sinx)/((pi-2x)^2),when x!=pi/2 and f(pi/2)=lambda, the ...

    Text Solution

    |

  4. The value of k which makes f(x)={sinx/x ,x!=0, and k , ...

    Text Solution

    |

  5. Show that the function f(x)=2x-|x| is continuous at x=0.

    Text Solution

    |

  6. If the function f(x)=(2x-sin^(-1)x)/(2x+tan^(-1)x) is continuous at ea...

    Text Solution

    |

  7. Let f(x)={(x-4)/(|x-4|a+b)+a ,x<0 (x-4)/(|x-4|)+b ,x >0 Then, f(x) i...

    Text Solution

    |

  8. Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)|, x!=1,2 & 6, x=1 & 12 , x = 2 t...

    Text Solution

    |

  9. The values of the constants a , b and c for which the function f(x)={(...

    Text Solution

    |

  10. Determine the value of the constant m so that the function f(x)={m(x^...

    Text Solution

    |

  11. The value of f(0), so that the function f(x)=((27-2x)^(1/3)-3)/(9-3(2...

    Text Solution

    |

  12. The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 0,x=0 (a)is continu...

    Text Solution

    |

  13. The points of discontinuity of the function f(x)={2sqrt(x),0lt=xlt=1 ...

    Text Solution

    |

  14. If f(x)=(tan(pi/4-x))/(cot2x) for x!=pi/4, find the value of which c...

    Text Solution

    |

  15. Find the values of aa n db so that the function f(x) defined by f(x)={...

    Text Solution

    |

  16. f(x)={(sqrt(1+p x)-sqrt(1-p x))/x ,-1lt=x<0(2x+1)/(x-2),0geqxgeq1 is ...

    Text Solution

    |

  17. The value of f(0) so that the function f(x)=(2-(256-7x)^(1/8))/((5x+32...

    Text Solution

    |

  18. The function f(x)={(sin3x)/x ,x!=0 k/2,x=0 is continuous of x=0,then...

    Text Solution

    |

  19. Discuss the continuity of the function f(x)={(sin2x)/x ,ifx<0x+2,ifxg...

    Text Solution

    |

  20. Test the continuity of the following function at the origin: f(x)={(|...

    Text Solution

    |