Home
Class 12
MATHS
Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)|, x!...

`Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)|`, x!=1,2 & 6, x=1 & 12 , x = 2 ` `then `f(x)` is continuous on the set` (a) R (b) R-{1} (c) R-{2} (d) R-{1,2}

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the function \( f(x) \) is continuous, we need to analyze the given piecewise function: \[ f(x) = \begin{cases} \frac{x^4 - 5x^2 + 4}{|(x-1)(x-2)|}, & x \neq 1, 2 \\ 6, & x = 1 \\ 12, & x = 2 \end{cases} \] ### Step 1: Identify the points of discontinuity The function is defined differently at \( x = 1 \) and \( x = 2 \). We need to check the continuity at these points. ### Step 2: Check continuity at \( x = 1 \) To check continuity at \( x = 1 \), we need to find the left-hand limit (LHL), right-hand limit (RHL), and the function value at \( x = 1 \). **Left-hand limit as \( x \to 1^- \)**: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x^4 - 5x^2 + 4}{-(x-1)(x-2)} \] Substituting \( x = 1 \): \[ = \frac{1^4 - 5(1^2) + 4}{-(1-1)(1-2)} = \frac{1 - 5 + 4}{0} = \frac{0}{0} \text{ (indeterminate)} \] We need to simplify: \[ x^4 - 5x^2 + 4 = (x^2 - 4)(x^2 - 1) = (x-2)(x+2)(x-1)(x+1) \] Thus, \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{(x-2)(x+2)(x-1)(x+1)}{-(x-1)(x-2)} \] Cancelling \( (x-1)(x-2) \): \[ = \lim_{x \to 1^-} \frac{(x+2)(x+1)}{-1} = \frac{(1+2)(1+1)}{-1} = \frac{3 \cdot 2}{-1} = -6 \] **Right-hand limit as \( x \to 1^+ \)**: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{(x-2)(x+2)(x-1)(x+1)}{(x-1)(x-2)} = \lim_{x \to 1^+} \frac{(x+2)(x+1)}{1} = \frac{3 \cdot 2}{1} = 6 \] Since \( \lim_{x \to 1^-} f(x) = -6 \) and \( \lim_{x \to 1^+} f(x) = 6 \), the left-hand limit does not equal the right-hand limit. Thus, \( f(x) \) is discontinuous at \( x = 1 \). ### Step 3: Check continuity at \( x = 2 \) **Left-hand limit as \( x \to 2^- \)**: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} \frac{(x-2)(x+2)(x-1)(x+1)}{-(x-1)(x-2)} \] Cancelling \( (x-2) \): \[ = \lim_{x \to 2^-} \frac{(x+2)(x+1)}{-1} = \frac{(2+2)(2+1)}{-1} = \frac{4 \cdot 3}{-1} = -12 \] **Right-hand limit as \( x \to 2^+ \)**: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{(x-2)(x+2)(x-1)(x+1)}{(x-1)(x-2)} = \lim_{x \to 2^+} \frac{(x+2)(x+1)}{1} = \frac{(2+2)(2+1)}{1} = 12 \] Since \( \lim_{x \to 2^-} f(x) = -12 \) and \( \lim_{x \to 2^+} f(x) = 12 \), the left-hand limit does not equal the right-hand limit. Thus, \( f(x) \) is discontinuous at \( x = 2 \). ### Step 4: Conclusion The function \( f(x) \) is continuous everywhere except at \( x = 1 \) and \( x = 2 \). Therefore, the set where \( f(x) \) is continuous is: \[ \text{Answer: } \mathbb{R} - \{1, 2\} \]

To determine where the function \( f(x) \) is continuous, we need to analyze the given piecewise function: \[ f(x) = \begin{cases} \frac{x^4 - 5x^2 + 4}{|(x-1)(x-2)|}, & x \neq 1, 2 \\ 6, & x = 1 \\ 12, & x = 2 ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    RD SHARMA|Exercise Solved Examples And Exercises|141 Videos
  • DEFINITE INTEGRALS

    RD SHARMA|Exercise Solved Examples And Exercises|567 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)|)\ \ \ \ ,\ \ \ x!=1,\ 1 6\ \ \ \ \ \ \ \ \ \ \ \ \ ,\ \ \ x=1 ,\ \ \ \ \12 ,\ \ \ \ \ \ \ \ \ x=2 . Then, f(x) is continuous on the set R (b) R-{1} (c) R-{2} (d) R-{1,\ 2}

If f: R->R is defined by f(x)={(x+2)/(x^2+3x+2) if x in R-{-1,-2}, -1 if x = -2 and 0 if x=-1. ifx=-2 then is continuous on the set

Let f(x)=x-[x],x in R, then f'((1)/(2)) is

Let f : R to and f (x) = (x (x^(4) + 1) (x+1) +x ^(4)+2)/(x^(2) +x+1), then f (x) is :

Let f(x)=sin^(-1)((2x)/(1+x^(2)))AA x in R. The function f(x) is continuous everywhere but not differentiable at x is/ are

Let f(x)= x^4- 3x^3 + 2x^2-3x+ a .If f(sqrt-1)= 0 and a in R then prove that f (x) < 0 for x in (1,2) .

If f(x+(1)/(2))+f(x-(1)/(2))=f(x) for all x in R then the period of f(x) is 1(b)2(c)3(d)4

Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)fora l lx in [-1,2]dot Let R_1=int_(-1)^2xf(x)dx , and R_2 be the area of the region bounded by y=f(x),x=-1,x=2, and the x-axis . Then (a)R_1=2R_2 (b) R_1=3R_2 (c)2R_1 (d) 3R_1=R_2

If f:R to R is defined by f(x)={{:(,(x-2)/(x^(2)-3x+2),"if "x in R-(1,2)),(,2,"if "x=1),(,1,"if "x=2):} "them " lim_(x to 2) (f(x)-f(2))/(x-2)=

RD SHARMA-CONTINUITY-Solved Examples And Exercises
  1. If the function f(x)=(2x-sin^(-1)x)/(2x+tan^(-1)x) is continuous at ea...

    Text Solution

    |

  2. Let f(x)={(x-4)/(|x-4|a+b)+a ,x<0 (x-4)/(|x-4|)+b ,x >0 Then, f(x) i...

    Text Solution

    |

  3. Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)|, x!=1,2 & 6, x=1 & 12 , x = 2 t...

    Text Solution

    |

  4. The values of the constants a , b and c for which the function f(x)={(...

    Text Solution

    |

  5. Determine the value of the constant m so that the function f(x)={m(x^...

    Text Solution

    |

  6. The value of f(0), so that the function f(x)=((27-2x)^(1/3)-3)/(9-3(2...

    Text Solution

    |

  7. The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 0,x=0 (a)is continu...

    Text Solution

    |

  8. The points of discontinuity of the function f(x)={2sqrt(x),0lt=xlt=1 ...

    Text Solution

    |

  9. If f(x)=(tan(pi/4-x))/(cot2x) for x!=pi/4, find the value of which c...

    Text Solution

    |

  10. Find the values of aa n db so that the function f(x) defined by f(x)={...

    Text Solution

    |

  11. f(x)={(sqrt(1+p x)-sqrt(1-p x))/x ,-1lt=x<0(2x+1)/(x-2),0geqxgeq1 is ...

    Text Solution

    |

  12. The value of f(0) so that the function f(x)=(2-(256-7x)^(1/8))/((5x+32...

    Text Solution

    |

  13. The function f(x)={(sin3x)/x ,x!=0 k/2,x=0 is continuous of x=0,then...

    Text Solution

    |

  14. Discuss the continuity of the function f(x)={(sin2x)/x ,ifx<0x+2,ifxg...

    Text Solution

    |

  15. Test the continuity of the following function at the origin: f(x)={(|...

    Text Solution

    |

  16. Show that the function f(x) given by f(x)={(xsin(1/x),x!=0),(0,x=0):} ...

    Text Solution

    |

  17. Show that the function f(x) given by f(x)={(sinx)/x+cosx ,x!=0 and 2,...

    Text Solution

    |

  18. Examination the function f(t) given by f(x)={(cosx)/(pi/2-x); for ...

    Text Solution

    |

  19. Discuss the continuity of the function f(x) given by f(x)={2-x , x<0 ...

    Text Solution

    |

  20. Determine the values of a , b , c for which the function f(x)={(sin(...

    Text Solution

    |