Home
Class 12
PHYSICS
Given : vecA = 2hati + 3hatj and vecB = ...

Given : `vecA = 2hati + 3hatj` and `vecB = 5hati - 6hatj`. The magnitude of `vecA + vecB` is

A

4 units

B

10 units

C

`sqrt(58)` units

D

`sqrt(61)` units

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector sum \(\vec{A} + \vec{B}\), we will follow these steps: ### Step 1: Write down the vectors Given: \[ \vec{A} = 2\hat{i} + 3\hat{j} \] \[ \vec{B} = 5\hat{i} - 6\hat{j} \] ### Step 2: Add the vectors To find \(\vec{A} + \vec{B}\), we add the corresponding components of the vectors: \[ \vec{A} + \vec{B} = (2\hat{i} + 3\hat{j}) + (5\hat{i} - 6\hat{j}) \] Combine the \(\hat{i}\) components and the \(\hat{j}\) components: \[ \vec{A} + \vec{B} = (2 + 5)\hat{i} + (3 - 6)\hat{j} \] \[ \vec{A} + \vec{B} = 7\hat{i} - 3\hat{j} \] ### Step 3: Calculate the magnitude of \(\vec{A} + \vec{B}\) The magnitude of a vector \(\vec{R} = x\hat{i} + y\hat{j}\) is given by: \[ |\vec{R}| = \sqrt{x^2 + y^2} \] For \(\vec{A} + \vec{B} = 7\hat{i} - 3\hat{j}\): \[ |\vec{A} + \vec{B}| = \sqrt{(7)^2 + (-3)^2} \] Calculating the squares: \[ |\vec{A} + \vec{B}| = \sqrt{49 + 9} \] \[ |\vec{A} + \vec{B}| = \sqrt{58} \] ### Final Answer Thus, the magnitude of \(\vec{A} + \vec{B}\) is: \[ |\vec{A} + \vec{B}| = \sqrt{58} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -2 (LEVEL - II) MULTIPLE CORRECT|13 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -3 (LEVEL - I) SUBJECTIVE|15 Videos
  • VECTOR & CALCULUS

    MOTION|Exercise EXERCISE -1|76 Videos
  • VECTOR

    MOTION|Exercise Exercise - 3|18 Videos
  • WAVE MOTION

    MOTION|Exercise Exercise - 3 Section - B (Previous Years Problems)|7 Videos

Similar Questions

Explore conceptually related problems

vecA and vecB are two vectors gives by vecA = 2 hati + 3hatj and vecB = hati +hatj . The magnetiude of the component of vecA along vecB is :

Given : vecA = 2hati - hatj + 2hatk and vecB = -hati - hatj + hatk . The unit vector of vecA - vecB is

Given veca = hati-hatj+hatk and vecb = 2hati-4hatj-3hatk , find the magnitude of veca

vecA and vecB and vectors expressed as vecA = 2hati + hatj and vecB = hati - hatj Unit vector perpendicular to vecA and vecB is:

If vecA=4hati-3hatj and vecB=6hati+8hatj then magnitude and direction of vecA+vecB will be

If vecA=2hati + 3hatj and vecB= 5hati + 7hatj , then the vector having the magnitude of vecA and direction of vecB would be

If vecA=2hati+4hatj and vecB=6hati+8hatj and A and B are the magnitudes of vecA and vecB , then which of the following is not true?

MOTION-VECTOR & CALCULUS-EXERCISE -2 (LEVEL - I) OBJECTIVE PROBLEMS
  1. If veca = x(1) hati + y(1)hatj & vecb = x(2)hati + y(2) hatj. The cond...

    Text Solution

    |

  2. A vector vecA points vertically upward and vecB points towards north. ...

    Text Solution

    |

  3. Given : vecA = 2hati + 3hatj and vecB = 5hati - 6hatj. The magnitude o...

    Text Solution

    |

  4. Given : vecA = 2hati - hatj + 2hatk and vecB = -hati - hatj + hatk. Th...

    Text Solution

    |

  5. Find (dy)/(dx) as a function of x y = (x/2 - 1)^(-10)

    Text Solution

    |

  6. Find (dy)/(dx) as a function of x y = sin 5x

    Text Solution

    |

  7. If y=sin(x)+"in"(x^(2))+e^(2x) "then"(dy)/(dx) will be :

    Text Solution

    |

  8. If y=2sin(omegat+phi) where omega and phi constants then (dy)/(dt) wil...

    Text Solution

    |

  9. Find the first derivative and second derivative of given function w.r....

    Text Solution

    |

  10. Find the first derivative and second derivative of given function w.r....

    Text Solution

    |

  11. Find derivative of e^x tanx

    Text Solution

    |

  12. Find the derivative of given functions w.r.t the corresponding indepen...

    Text Solution

    |

  13. Find the derivative of given functions w.r.t the corresponding indepen...

    Text Solution

    |

  14. Find the derivative of given functions w.r.t the corresponding indepen...

    Text Solution

    |

  15. Given y=f(u) and u=g(x) Find (dy)/(dx) if y=2u^3, u=8x-1

    Text Solution

    |

  16. Given y = f(u) and u = g(x). Find (dy)/(dx). y = sin u, u = 3x + 1

    Text Solution

    |

  17. The displacement of body is given by s = 4 + 2t^4. The acceleration of...

    Text Solution

    |

  18. Momentum of a body moving in a straight line is p = (2t^3 + t^2 + 1) k...

    Text Solution

    |

  19. Momentum of a body moving in a straight line is p = (2t^3 + t^2 + 2t ...

    Text Solution

    |

  20. The charge flowing throug a conductor beginning with time to=0 is give...

    Text Solution

    |