Home
Class 12
MATHS
If for x (0,1/4), the derivative of tan...

If for `x (0,1/4),` the derivative of `tan^(-1)((6xsqrt(x))/(1-9x^3))` is `sqrt(x)dotg(x),` then `g(x)` equals: (1)`(3x)/(1-9x^3)` (2) `3/(1+9x^3)` (3) `9/(1+9x^3)` (4) `(3xsqrt(x))/(1-9x^3)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos
  • LINEAR INEQUALITIES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

the derivative of (tan^(-1)(6x sqrt(x)))/(1-9x^(3)) is sqrt(x)g(x) then g(x) is:

int_(1)^(2)(3x)/(9x^(2)-1)dx

If y=sin^(-1)(6xsqrt(1-9x^(2))),-1/(3sqrt2)ltxlt1/(3sqrt2) , then find (dy)/(dx) .

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to

int (x^(1/3))/((1+x^(4/3))^(9))dx

int (x^(1/3))/((1+x^(4/3))^(9))dx