Home
Class 12
MATHS
The Integral int(pi/4)^((3pi)/4)(dx)/(1+...

The Integral `int_(pi/4)^((3pi)/4)(dx)/(1+cosx)` is equal to:

A

`-1`

B

`-2`

C

`2`

D

`4`

Text Solution

AI Generated Solution

To solve the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} \] we can use a symmetry property of definite integrals. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • HYPERBOLA

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|3 Videos

Similar Questions

Explore conceptually related problems

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

int_(pi//4)^(3pi//4) (dx)/(1+ cos x) is equal to

Knowledge Check

  • int_(-pi//4)^(pi//4)(dx)/(1+ cos 2x) is equal to

    A
    1
    B
    2
    C
    3
    D
    4
  • int_(pi//4)^(3pi//4)(1)/(1+cosx)dx is equal to

    A
    `2`
    B
    `6`
    C
    `5`
    D
    `3`
  • int _(-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

    A
    0
    B
    1
    C
    2
    D
    3
  • Similar Questions

    Explore conceptually related problems

    The Integral I=int_(pi/6)^((5pi)/6)(dx)/(1+cosx) is equal to:

    The value of int_(pi/4)^((3pi)/4)(cos x)/(1-cos x)dx is equal to (k-(pi)/(2)) then k=

    int_(2pi)^((3pi)/2)cosx dx

    The integral int_(0)^(pi/2)(dx)/(1+cos x) is equal to

    int_(pi//4)^(3pi//4)(xsinx)/(1+sinx)dx