Home
Class 12
MATHS
lim(x-pi/2) (cot x - cosx)/(pi-2x) equal...

`lim_(x-pi/2) (cot x - cosx)/(pi-2x)` equals: (1) `1/8` (2) `1/4` (3) `1/24` (4) `1/16`

Text Solution

Verified by Experts

Let `x = pi/2 - h`,
Then, our limit becomes,
`Lim_(h->0) (cot(pi/2-h) - cos(pi/2-h))/(pi -(2(pi/2-h))^3 )`
`=Lim_(h->0) (tanh - sinh)/(pi -2(pi/2-h))^3 `
`=Lim_(h->0) (sinh(1-cosh)/(cosh))/(8h^3) `
`=Lim_(h->0) (tanh(2sin^2(h/2)))/(8h^3) `
`=Lim_(h->0) (tanh(sin^2(h/2)))/(4h^3) `
`=Lim_(h->0) (tanh/h)(sin^2(h/2))/(4*4(h/2)^2) `
...
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS 2023 JAN ACTUAL PAPER

    JEE MAINS PREVIOUS YEAR|Exercise Question|360 Videos
  • LINEAR INEQUALITIES

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

The lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3)) equals

lim_(x to pi/2)(1-sinx)/(cosx) is equal to :

lim_(x rarr((pi)/(2)))(cos ecx-1)/(cot^(2)x) equals

lim_(xrarr1)(x^8-2x+1)/(x^4-2x+1) equals

lim_(x rarr1)(1+cos pi x)cot^(2)pi x is equal to

lim_ (x rarr pi / 2) (1-sin x) / (((pi) / (2) -x) cot x)