Home
Class 12
MATHS
Find int0^2 (x^2+1)dx as the limit of a ...

Find `int_0^2 (x^2+1)dx` as the limit of a sum.

A

`14/3`

B

`-14/3`

C

`16/3`

D

`-16/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the integral \( \int_0^2 (x^2 + 1) \, dx \) as the limit of a sum, we will follow these steps: ### Step 1: Set up the integral as a limit of a sum The integral can be expressed using the definition of the Riemann sum: \[ \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(a + i \cdot h) \cdot h \] where \( h = \frac{b - a}{n} \). ### Step 2: Identify the values of \( a \), \( b \), and \( f(x) \) In our case: - \( a = 0 \) - \( b = 2 \) - \( f(x) = x^2 + 1 \) ### Step 3: Calculate \( h \) Using the formula for \( h \): \[ h = \frac{b - a}{n} = \frac{2 - 0}{n} = \frac{2}{n} \] ### Step 4: Write the Riemann sum The Riemann sum becomes: \[ \int_0^2 (x^2 + 1) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f\left(0 + i \cdot \frac{2}{n}\right) \cdot \frac{2}{n} \] This simplifies to: \[ = \lim_{n \to \infty} \sum_{i=0}^{n-1} \left( \left(\frac{2i}{n}\right)^2 + 1 \right) \cdot \frac{2}{n} \] ### Step 5: Substitute \( f(x) \) into the sum Substituting \( f\left(\frac{2i}{n}\right) \): \[ = \lim_{n \to \infty} \sum_{i=0}^{n-1} \left( \frac{4i^2}{n^2} + 1 \right) \cdot \frac{2}{n} \] \[ = \lim_{n \to \infty} \sum_{i=0}^{n-1} \left( \frac{8i^2}{n^3} + \frac{2}{n} \right) \] ### Step 6: Separate the sum into two parts This can be separated into two sums: \[ = \lim_{n \to \infty} \left( \frac{8}{n^3} \sum_{i=0}^{n-1} i^2 + \sum_{i=0}^{n-1} \frac{2}{n} \right) \] ### Step 7: Evaluate the sums Using the formula for the sum of squares: \[ \sum_{i=0}^{n-1} i^2 = \frac{(n-1)n(2n-1)}{6} \] Thus, \[ \lim_{n \to \infty} \left( \frac{8}{n^3} \cdot \frac{(n-1)n(2n-1)}{6} + 2 \cdot \frac{n}{n} \right) \] The second term simplifies to: \[ \lim_{n \to \infty} 2 = 2 \] ### Step 8: Simplify the first sum Now simplifying the first term: \[ \frac{8}{n^3} \cdot \frac{(n-1)n(2n-1)}{6} \approx \frac{8 \cdot 2n^3}{6n^3} = \frac{16}{6} = \frac{8}{3} \] ### Step 9: Combine the results Combining both results: \[ \lim_{n \to \infty} \left( \frac{8}{3} + 2 \right) = \frac{8}{3} + \frac{6}{3} = \frac{14}{3} \] ### Final Result Thus, the value of the integral is: \[ \int_0^2 (x^2 + 1) \, dx = \frac{14}{3} \]

To find the integral \( \int_0^2 (x^2 + 1) \, dx \) as the limit of a sum, we will follow these steps: ### Step 1: Set up the integral as a limit of a sum The integral can be expressed using the definition of the Riemann sum: \[ \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(a + i \cdot h) \cdot h \] where \( h = \frac{b - a}{n} \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^2 (x^2+x+1)dx as the limit of a sum.

Evaluate int_(0)^(1)x^(2)dx as the limit of a sum.

Evaluate int_1^3 x^3dx as the limit of a sum.

Evaluate int_0^1 e^xdx as the limit of a sum.

Evaluate int_(0)^(3)(x^(2)+4)dx as the limit of a sum

Evaluate int_(0)^(2)(x^(2)+2x+1)dx as limit of a sum.

Evaluate int_1^3 (2x+3)dx as the limit of a sum.

Evaluate int_(0)^(2)(2x^(2)+x+5)dx as limit of a sum.

Evaluate int_0^3 (x^2-2x+2)dx as limit of a sum.