Home
Class 12
MATHS
int(e^x(1+x))/(cos^2 (e^x * x) )dx equal...

`int(e^x(1+x))/(cos^2 (e^x * x) )dx` equals

A

(A) `-cot(e ^x*x)+C`

B

(B) `tan(x e^x)+C`

C

(C) `tan(e^x)+C`

D

(D) `cot(e^x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{e^x(1+x)}{\cos^2(e^x x)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral The integral can be expressed as: \[ \int \frac{e^x + e^x x}{\cos^2(e^x x)} \, dx \] ### Step 2: Use Substitution Let \( t = e^x x \). We will differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = e^x x + e^x = e^x (x + 1) \] This implies: \[ dt = e^x (1 + x) \, dx \] Thus, we can rewrite the integral in terms of \( t \): \[ dx = \frac{dt}{e^x (1 + x)} \] Substituting this into the integral gives: \[ \int \frac{dt}{\cos^2(t)} \] ### Step 3: Simplify the Integral The integral \( \int \frac{dt}{\cos^2(t)} \) is equivalent to: \[ \int \sec^2(t) \, dt \] ### Step 4: Integrate The integral of \( \sec^2(t) \) is: \[ \tan(t) + C \] ### Step 5: Substitute Back Now, substitute back \( t = e^x x \): \[ \tan(e^x x) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{e^x(1+x)}{\cos^2(e^x x)} \, dx = \tan(e^x x) + C \] ---

To solve the integral \( \int \frac{e^x(1+x)}{\cos^2(e^x x)} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral The integral can be expressed as: \[ \int \frac{e^x + e^x x}{\cos^2(e^x x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT|Exercise MISCELLANEOUS EXERCISE|44 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx equal to

int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx=

What is int (e^(x) (1 + x))/(cos^(2) (xe^(x))) dx equal to ? where c is a constant of integration

int(e^(x)+cos x)/(e^(x) +sin x) dx

int((x+1)e^(x))/(cos^(2)(xe^(x)))dx=?

int(e^(x)-sin x)/(cos x+e^(x))dx

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

int(e^(x))/((1+e^(x))(2+e^(x)))dx