Home
Class 12
MATHS
int(sin^2x-cos^2x)/(sin^2xcos^2x)dx is ...

`int(sin^2x-cos^2x)/(sin^2xcos^2x)dx` is equal to

A

`tanx+cotx+c`

B

`tanx+cose cx+c`

C

`-tanx+cotx+c`

D

`tanx+secx+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ \int \left( \frac{\sin^2 x}{\sin^2 x \cos^2 x} - \frac{\cos^2 x}{\sin^2 x \cos^2 x} \right) \, dx = \int \left( \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right) \, dx. \] ### Step 2: Simplify the Terms This simplifies to: \[ \int \sec^2 x \, dx - \int \csc^2 x \, dx. \] ### Step 3: Integrate Each Term Now we can integrate each term separately: 1. The integral of \(\sec^2 x\) is \(\tan x\). 2. The integral of \(\csc^2 x\) is \(-\cot x\). Thus, we have: \[ \int \sec^2 x \, dx - \int \csc^2 x \, dx = \tan x + \cot x + C, \] where \(C\) is the constant of integration. ### Final Answer So, the final result is: \[ \tan x + \cot x + C. \]

To solve the integral \[ \int \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT|Exercise MISCELLANEOUS EXERCISE|44 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx is equal to:

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

int(sin2xcos2x)/(sin^(4)2x+cos^(4)2x)dx=

int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx=

Find int(sin^3x+cos^3x)/(sin^2xcos^2x)dx .