Home
Class 12
MATHS
Find int[log(logx)+1/((logx)^2)]dx...

Find `int[log(logx)+1/((logx)^2)]dx`

Text Solution

AI Generated Solution

To solve the integral \( \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx \), we can break it down into two parts and use integration by parts where necessary. ### Step-by-Step Solution: 1. **Split the Integral**: \[ \int \left( \log(\log x) + \frac{1}{(\log x)^2} \right) dx = \int \log(\log x) \, dx + \int \frac{1}{(\log x)^2} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

"F i n d"int[log(logx)+1/((logx)^2)]dx Find log (log x)+ |dx 2 (log x)

int[(1)/(logx)-(1)/((logx)^(2))]dx=

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int(log(logx))/(x.logx)dx=

int(log(x//e))/((logx)^(2))dx=

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx