Home
Class 12
MATHS
If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1...

If `y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0)` then `(dy)/(dx)` is equal to

A

`3/(1 + 9x^2)`

B

`1/(1 + 6x^2)`

C

`1/(1 + 6x^2) + 1/(1 + x^2)`

D

`3/(1 + 6x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given function \[ y = \tan^{-1} \left( \frac{x}{1 + 6x^2} \right) + \tan^{-1} \left( \frac{2x - 1}{2x + 1} \right), \] we will differentiate \(y\) with respect to \(x\). ### Step 1: Differentiate the first term We start with the first term: \[ y_1 = \tan^{-1} \left( \frac{x}{1 + 6x^2} \right). \] Using the derivative of \(\tan^{-1}(u)\), which is \(\frac{1}{1 + u^2} \cdot \frac{du}{dx}\), we need to find \(u\) and its derivative: Let \[ u = \frac{x}{1 + 6x^2}. \] Now, we find \(\frac{du}{dx}\): Using the quotient rule: \[ \frac{du}{dx} = \frac{(1 + 6x^2)(1) - x(12x)}{(1 + 6x^2)^2} = \frac{1 + 6x^2 - 12x^2}{(1 + 6x^2)^2} = \frac{1 - 6x^2}{(1 + 6x^2)^2}. \] Now, we can differentiate \(y_1\): \[ \frac{dy_1}{dx} = \frac{1}{1 + \left(\frac{x}{1 + 6x^2}\right)^2} \cdot \frac{1 - 6x^2}{(1 + 6x^2)^2}. \] ### Step 2: Simplify the first term's derivative We need to simplify the term: \[ 1 + \left(\frac{x}{1 + 6x^2}\right)^2 = 1 + \frac{x^2}{(1 + 6x^2)^2} = \frac{(1 + 6x^2)^2 + x^2}{(1 + 6x^2)^2} = \frac{1 + 12x^2 + 36x^4 + x^2}{(1 + 6x^2)^2} = \frac{1 + 13x^2 + 36x^4}{(1 + 6x^2)^2}. \] Thus, \[ \frac{dy_1}{dx} = \frac{(1 - 6x^2)(1 + 6x^2)^2}{(1 + 13x^2 + 36x^4)}. \] ### Step 3: Differentiate the second term Now, consider the second term: \[ y_2 = \tan^{-1} \left( \frac{2x - 1}{2x + 1} \right). \] Let \[ v = \frac{2x - 1}{2x + 1}. \] Finding \(\frac{dv}{dx}\): Using the quotient rule: \[ \frac{dv}{dx} = \frac{(2x + 1)(2) - (2x - 1)(2)}{(2x + 1)^2} = \frac{(4x + 2 - 4x + 2)}{(2x + 1)^2} = \frac{4}{(2x + 1)^2}. \] Now, we differentiate \(y_2\): \[ \frac{dy_2}{dx} = \frac{1}{1 + \left(\frac{2x - 1}{2x + 1}\right)^2} \cdot \frac{4}{(2x + 1)^2}. \] ### Step 4: Simplify the second term's derivative We simplify: \[ 1 + \left(\frac{2x - 1}{2x + 1}\right)^2 = 1 + \frac{(2x - 1)^2}{(2x + 1)^2} = \frac{(2x + 1)^2 + (2x - 1)^2}{(2x + 1)^2} = \frac{4x^2 + 4x + 1 + 4x^2 - 4x + 1}{(2x + 1)^2} = \frac{8x^2 + 2}{(2x + 1)^2}. \] Thus, \[ \frac{dy_2}{dx} = \frac{4(2x + 1)^2}{(8x^2 + 2)}. \] ### Step 5: Combine the derivatives Now we can combine the derivatives: \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx}. \] ### Final Result After simplification, we find: \[ \frac{dy}{dx} = \frac{3}{1 + 9x^2}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 2

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • JEE MOCK TEST 21

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) (x)/(2) - cot ^(-1) (x)/(2) , "then" (dy)/(dx) is equal to

If y=(1+x^(2))tan^(-1) x-x , then (dy)/(dx) is equal to

If y=tan^(-1)(cot((pi)/(2)-x)) then (dy)/(dx) is equal to

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y=tan ^(-1) ((a-x) /(1+x^(2))),then (dy)/(dx) =

Giveny =tan^(-1)((2x)/(1-x^(2))), then ((d^(5)y)/(dx^(5)))_(x=0) is equal to

NTA MOCK TESTS-JEE MOCK TEST 20-MATHEMATICS
  1. Let Delta ABC is an isosceles trianlge with AB = AC. If B = (0,a) , C ...

    Text Solution

    |

  2. Let A (0,3) and B(0,12) be two vertices of a Delta ABC where C = (x ,0...

    Text Solution

    |

  3. Consider three statements p : person 'A' passed in mathematics exam ...

    Text Solution

    |

  4. In equation (Z - 1)^(n) = Z^(n) = 1 (AA n in N) has solution, then n c...

    Text Solution

    |

  5. The solution of the differential equation (3x^(2) sin (1/x) + y) dx = ...

    Text Solution

    |

  6. The quadratic equation (1 - sintheta) x^(2)+ 2(1 - sin theta) x - 3 si...

    Text Solution

    |

  7. The minimum value of the expression 3x + 2y (AA x, y >0), where xy^(2)...

    Text Solution

    |

  8. If in the expansion of (1+ x )^(m) (1-x) ^(n) the coefficient of x and...

    Text Solution

    |

  9. Number of words that can be formed with the letters of the word ALGEBR...

    Text Solution

    |

  10. If f(k - x) + f(x) = sin x, then the value of integral I = int(0)^(k) ...

    Text Solution

    |

  11. If the difference between the number of subsets of the sets A and B is...

    Text Solution

    |

  12. For the function f(x) = sin (pi[x]) xx cos^(-1)([x]), choose the corre...

    Text Solution

    |

  13. The value of lim(x to 0) (sinx)/(3) [5/x] is equal to [where [.] rep...

    Text Solution

    |

  14. If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x >...

    Text Solution

    |

  15. If |3x - 1| , 3, |x - 3| are the first three terms of an arithmentic p...

    Text Solution

    |

  16. If f(x) = {(px + q, :x le 2),(x^2 - 5x + 6, : 2 < x < 3),(ax^2 + bx + ...

    Text Solution

    |

  17. If the area bounded by y = ||x|^(2) - 4|x| + 3|| and the x-axis from x...

    Text Solution

    |

  18. Let M be a square matix of order 3 whose elements are real number and ...

    Text Solution

    |

  19. If common tangents of x^(2) + y^(2) = r^(2) and (x^2)/16 + (y^2)/(9) =...

    Text Solution

    |

  20. The angular depression of the top and the foot of the chimney seen fro...

    Text Solution

    |