Home
Class 12
MATHS
If f(x) = {(px + q, :x le 2),(x^2 - 5x +...

If `f(x) = {(px + q, :x le 2),(x^2 - 5x + 6, : 2 < x < 3),(ax^2 + bx + 1, : x ge 3):}`
is differentiable everywhere, then `|p| + |q| + |1/a| + |1/b|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the piecewise function \( f(x) \) defined as follows: \[ f(x) = \begin{cases} px + q & \text{if } x \leq 2 \\ x^2 - 5x + 6 & \text{if } 2 < x < 3 \\ ax^2 + bx + 1 & \text{if } x \geq 3 \end{cases} \] ### Step 1: Ensure Continuity at \( x = 2 \) For \( f(x) \) to be continuous at \( x = 2 \), we need: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to 2^-} f(x) = p(2) + q = 2p + q \] Calculating the right-hand limit: \[ \lim_{x \to 2^+} f(x) = 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0 \] Setting these equal gives us: \[ 2p + q = 0 \quad \text{(1)} \] ### Step 2: Ensure Continuity at \( x = 3 \) For continuity at \( x = 3 \): \[ \lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to 3^-} f(x) = 3^2 - 5(3) + 6 = 9 - 15 + 6 = 0 \] Calculating the right-hand limit: \[ \lim_{x \to 3^+} f(x) = a(3^2) + b(3) + 1 = 9a + 3b + 1 \] Setting these equal gives us: \[ 9a + 3b + 1 = 0 \quad \text{(2)} \] ### Step 3: Ensure Differentiability at \( x = 2 \) For \( f(x) \) to be differentiable at \( x = 2 \): \[ \lim_{x \to 2^-} f'(x) = \lim_{x \to 2^+} f'(x) \] Calculating the left-hand derivative: \[ f'(x) = p \quad \text{for } x < 2 \] Calculating the right-hand derivative: \[ f'(x) = 2x - 5 \quad \text{for } 2 < x < 3 \] Evaluating at \( x = 2 \): \[ \lim_{x \to 2^+} f'(x) = 2(2) - 5 = 4 - 5 = -1 \] Setting these equal gives us: \[ p = -1 \quad \text{(3)} \] ### Step 4: Substitute \( p \) into Equation (1) Substituting \( p = -1 \) into equation (1): \[ 2(-1) + q = 0 \implies -2 + q = 0 \implies q = 2 \quad \text{(4)} \] ### Step 5: Ensure Differentiability at \( x = 3 \) For differentiability at \( x = 3 \): \[ \lim_{x \to 3^-} f'(x) = \lim_{x \to 3^+} f'(x) \] Calculating the left-hand derivative: \[ f'(x) = 2x - 5 \quad \text{for } 2 < x < 3 \] Evaluating at \( x = 3 \): \[ \lim_{x \to 3^-} f'(x) = 2(3) - 5 = 6 - 5 = 1 \] Calculating the right-hand derivative: \[ f'(x) = 2ax + b \quad \text{for } x \geq 3 \] Evaluating at \( x = 3 \): \[ \lim_{x \to 3^+} f'(x) = 2a(3) + b = 6a + b \] Setting these equal gives us: \[ 6a + b = 1 \quad \text{(5)} \] ### Step 6: Substitute \( b \) from Equation (2) From equation (2): \[ 9a + 3b + 1 = 0 \implies 3b = -9a - 1 \implies b = -3a - \frac{1}{3} \] Substituting \( b \) into equation (5): \[ 6a + (-3a - \frac{1}{3}) = 1 \] This simplifies to: \[ 3a - \frac{1}{3} = 1 \implies 3a = 1 + \frac{1}{3} = \frac{4}{3} \implies a = \frac{4}{9} \quad \text{(6)} \] ### Step 7: Substitute \( a \) back to find \( b \) Substituting \( a = \frac{4}{9} \) into \( b = -3a - \frac{1}{3} \): \[ b = -3\left(\frac{4}{9}\right) - \frac{1}{3} = -\frac{12}{9} - \frac{3}{9} = -\frac{15}{9} = -\frac{5}{3} \quad \text{(7)} \] ### Step 8: Calculate \( |p| + |q| + \frac{1}{|a|} + \frac{1}{|b|} \) Now we have: - \( p = -1 \) so \( |p| = 1 \) - \( q = 2 \) so \( |q| = 2 \) - \( a = \frac{4}{9} \) so \( \frac{1}{|a|} = \frac{9}{4} \) - \( b = -\frac{5}{3} \) so \( \frac{1}{|b|} = \frac{3}{5} \) Now we can compute: \[ |p| + |q| + \frac{1}{|a|} + \frac{1}{|b|} = 1 + 2 + \frac{9}{4} + \frac{3}{5} \] Finding a common denominator (20): \[ = 1 + 2 + \frac{45}{20} + \frac{12}{20} = 3 + \frac{57}{20} = \frac{60}{20} + \frac{57}{20} = \frac{117}{20} \] Thus, the final answer is: \[ \frac{117}{20} \] ### Final Answer \[ |p| + |q| + \frac{1}{|a|} + \frac{1}{|b|} = \frac{117}{20} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 2

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • JEE MOCK TEST 21

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(2x^(2)+3,,,xge3),(ax^(2)+bx+1,,,xle3):} is differentiable everywhere, then (a)/(b^(2)) is equal to

If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):} is differentiable at x=1, then (a)/(b) is equal to

Suppose p ne q and difference between the roots of x^(2) + 2px + q = 0 is twice the difference between the roots of x^(2) + qx + (1)/(4) p = 0 then |p + q + 4| is equal to _______

" If "f(x)={[sin2x,,-2<=x<=0],[ax+b,,0<=x<=2]" ,is differentiable everywhere in "(-2,2)," then "(a,b)" equals."

Let f (x)= {{:(ac (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +qx +2,,, x gt 3):} is continous AA x in R except x =1 but |f (x)| is differentiable everywhere and f '(x) is continous at x=3 and |a+p+q|=k, then k=

If f (x) ={{:( px^(2) +q,"for " xle 1),( qx^(2) +px +r ,"for " xlgt 1 ):} where q ne 0 is derivable at x =1 ,then

Let f(x)={2x+3 for x 1 if f(x) is everywhere differentiable, prove that f(2)=-4

NTA MOCK TESTS-JEE MOCK TEST 20-MATHEMATICS
  1. Let Delta ABC is an isosceles trianlge with AB = AC. If B = (0,a) , C ...

    Text Solution

    |

  2. Let A (0,3) and B(0,12) be two vertices of a Delta ABC where C = (x ,0...

    Text Solution

    |

  3. Consider three statements p : person 'A' passed in mathematics exam ...

    Text Solution

    |

  4. In equation (Z - 1)^(n) = Z^(n) = 1 (AA n in N) has solution, then n c...

    Text Solution

    |

  5. The solution of the differential equation (3x^(2) sin (1/x) + y) dx = ...

    Text Solution

    |

  6. The quadratic equation (1 - sintheta) x^(2)+ 2(1 - sin theta) x - 3 si...

    Text Solution

    |

  7. The minimum value of the expression 3x + 2y (AA x, y >0), where xy^(2)...

    Text Solution

    |

  8. If in the expansion of (1+ x )^(m) (1-x) ^(n) the coefficient of x and...

    Text Solution

    |

  9. Number of words that can be formed with the letters of the word ALGEBR...

    Text Solution

    |

  10. If f(k - x) + f(x) = sin x, then the value of integral I = int(0)^(k) ...

    Text Solution

    |

  11. If the difference between the number of subsets of the sets A and B is...

    Text Solution

    |

  12. For the function f(x) = sin (pi[x]) xx cos^(-1)([x]), choose the corre...

    Text Solution

    |

  13. The value of lim(x to 0) (sinx)/(3) [5/x] is equal to [where [.] rep...

    Text Solution

    |

  14. If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x >...

    Text Solution

    |

  15. If |3x - 1| , 3, |x - 3| are the first three terms of an arithmentic p...

    Text Solution

    |

  16. If f(x) = {(px + q, :x le 2),(x^2 - 5x + 6, : 2 < x < 3),(ax^2 + bx + ...

    Text Solution

    |

  17. If the area bounded by y = ||x|^(2) - 4|x| + 3|| and the x-axis from x...

    Text Solution

    |

  18. Let M be a square matix of order 3 whose elements are real number and ...

    Text Solution

    |

  19. If common tangents of x^(2) + y^(2) = r^(2) and (x^2)/16 + (y^2)/(9) =...

    Text Solution

    |

  20. The angular depression of the top and the foot of the chimney seen fro...

    Text Solution

    |