Home
Class 12
MATHS
Let 2veca = vecb xx vecc + 2vecb where v...

Let `2veca = vecb xx vecc + 2vecb` where `veca, vecb and vecc` are three unit vectors, then sum of all possible values of `|3veca + 4vecb + 5vecc|` is

A

10

B

12

C

14

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation involving the unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\): \[ 2\vec{a} = \vec{b} \times \vec{c} + 2\vec{b} \] ### Step 1: Dot the equation with \(\vec{b}\) We will first take the dot product of both sides of the equation with \(\vec{b}\): \[ \vec{b} \cdot (2\vec{a}) = \vec{b} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (2\vec{b}) \] ### Step 2: Simplify the left-hand side The left-hand side simplifies to: \[ 2(\vec{a} \cdot \vec{b}) \] ### Step 3: Simplify the right-hand side The term \(\vec{b} \cdot (\vec{b} \times \vec{c})\) is zero because the dot product of a vector with a vector perpendicular to it is zero. The second term simplifies to: \[ 2(\vec{b} \cdot \vec{b}) = 2(1) = 2 \] So, we have: \[ 2(\vec{a} \cdot \vec{b}) = 2 \] ### Step 4: Solve for \(\vec{a} \cdot \vec{b}\) Dividing both sides by 2 gives us: \[ \vec{a} \cdot \vec{b} = 1 \] ### Step 5: Interpret the result Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, \(\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta\) implies: \[ 1 = 1 \cdot 1 \cdot \cos \theta \implies \cos \theta = 1 \] This means that the angle \(\theta\) between \(\vec{a}\) and \(\vec{b}\) is \(0^\circ\), so: \[ \vec{a} = \vec{b} \] ### Step 6: Substitute back into the original equation Substituting \(\vec{a} = \vec{b}\) into the original equation: \[ 2\vec{a} = \vec{a} \times \vec{c} + 2\vec{a} \] This simplifies to: \[ 0 = \vec{a} \times \vec{c} \] ### Step 7: Analyze the cross product The equation \(\vec{a} \times \vec{c} = 0\) implies that \(\vec{a}\) and \(\vec{c}\) are parallel. Thus, we have two cases: 1. \(\vec{c} = \vec{a}\) 2. \(\vec{c} = -\vec{a}\) ### Step 8: Calculate \(|3\vec{a} + 4\vec{b} + 5\vec{c}|\) #### Case 1: \(\vec{c} = \vec{a}\) \[ |3\vec{a} + 4\vec{a} + 5\vec{a}| = |(3 + 4 + 5)\vec{a}| = |12\vec{a}| = 12 \] #### Case 2: \(\vec{c} = -\vec{a}\) \[ |3\vec{a} + 4\vec{a} + 5(-\vec{a})| = |(3 + 4 - 5)\vec{a}| = |2\vec{a}| = 2 \] ### Step 9: Sum of all possible values The possible values of \(|3\vec{a} + 4\vec{b} + 5\vec{c}|\) are \(12\) and \(2\). Therefore, the sum of all possible values is: \[ 12 + 2 = 14 \] ### Final Answer The sum of all possible values of \(|3\vec{a} + 4\vec{b} + 5\vec{c}|\) is: \[ \boxed{14} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 20

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • JEE MOCK TEST 23

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If (veca xx vecb) xx vecc = veca xx (vecb xx vecc) where veca, vecb and vecc are any three vectors such that veca.vecb =0, vecb.vecc=0 then veca and vecc are:

If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc) , where veca, vecb and vecc are any three vectors such that veca.vecb ne 0, vecb.vecc ne 0 , then veca and vecc are:

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

If [(veca+2vecb+3vecc)xx(vecb+2vecc+3veca)],.(vecc+2veca+3vecb)]=54 where veca,vecb and vecc are 3 non - coplanar vectors, then the values of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}| is equal to

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If veca, vecb are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

NTA MOCK TESTS-JEE MOCK TEST 21-MATHEMATICS
  1. Let p, q and r be three statements, then (p to q) to r is equivalent t...

    Text Solution

    |

  2. Let two sides of a rectangle of area 20 sq. units are along lines x - ...

    Text Solution

    |

  3. Let 2veca = vecb xx vecc + 2vecb where veca, vecb and vecc are three u...

    Text Solution

    |

  4. If f(1 + x) = f(1 - x) (AA x in R), then the value of the integral I...

    Text Solution

    |

  5. If f(x) is a real valued function such that f(x + 6) - f(x + 3) + f(...

    Text Solution

    |

  6. The value of lim(x to 0) (tan^2 3x)/(sqrt(5) - sqrt(4 + "sec" x)) is e...

    Text Solution

    |

  7. If -pi < theta < pi, the equation (cos 3 theta + 1)x^(2) + 2(cos 2th...

    Text Solution

    |

  8. If In (2x^2 - 5), In (x^2 - 1) and In(x^2 - 3) are the first three ter...

    Text Solution

    |

  9. Image of line (x - 2)/3 = (y - 1)/1 = (z - 1)/(-4) in the plane x + y ...

    Text Solution

    |

  10. If pi < theta < (3pi)/(2) and cos theta = -3/5, then tan ((theta)/(4))...

    Text Solution

    |

  11. If the value of integral int(x+sqrt(x^2 -1))^(2)dx = ax^3 - x + b(x^...

    Text Solution

    |

  12. The range of the function sin^(-1)((x^(2))/(1+x^(2))) is

    Text Solution

    |

  13. The solution of the differential equation 1/(x^2 ) ((dy)/(dx))^(2) + 6...

    Text Solution

    |

  14. The number of tangents with positive slope that can be drawn from the ...

    Text Solution

    |

  15. A complex number z is said to be unimodular if . Suppose z1 and z2 ...

    Text Solution

    |

  16. Equation of the straight line which meets the circle x^2 + y^2 = 8 at ...

    Text Solution

    |

  17. If x1, x2, .....xn are n observations such that sum(i=1)^n (xi)^2=400 ...

    Text Solution

    |

  18. If the system of equation x - 2y + 5z = 3 2x - y + z = 1 and 11x - 7...

    Text Solution

    |

  19. A term of randomly chosen from the expansion of (root(6)(4) + 1/(root(...

    Text Solution

    |

  20. If a tangent of slope 2 of the ellipse (x^2)/(a^2) + (y^2)/1 = 1 passe...

    Text Solution

    |