Home
Class 11
MATHS
Consider the matrix A(alpha)=[(cosalpha,...

Consider the matrix `A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)]`
Find all possible real values of `alpha` satisfying the condition `A_(alpha)+A_(alpha)" "^(T)=I.`

Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.2|22 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.3|5 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos
  • QUESTION PAPER -19

    SURA PUBLICATION|Exercise SECTION - IV|11 Videos

Similar Questions

Explore conceptually related problems

Consider the matrix A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] Show that A_(alpha)A_(beta)=A_(alpha+beta)

If A=[(cos alpha, -sin alpha),(sin alpha, cos alpha)], and A+A'=I , then the value of alpha is

If F (alpha)= [{:(cosalpha,0, sinalpha),(0,1,0),(-sinalpha,0,cosalpha):}] Show that = F (alpha)^(-1)= F(-alpha)

lim_(alphato pi/4)(sinalpha-cosalpha)/(alpha-pi/4) is

If A(cosalpha,sinalpha),B(sinalpha,-cosalpha),C(1,2) are the vertices of A B C , then as alpha varies, find the locus of its centroid.

lim_(alphato0)(sin(alpha^(n)))/((sinalpha)^(m))

Find the amplitude of sinalpha+i(1-cosalpha)

(sinalpha+cosecalpha)^(2)+(cosalpha-secalpha)^(2)-tan^(2)alpha-cot^(2)alpha=?