Home
Class 11
MATHS
Without expanding the determinant , prov...

Without expanding the determinant , prove that
`|(s,a^(2),b^(2)+c^(2)),(s,b^(2),c^(2)+a^(2)),(s,c^(2),a^(2)+b^(2))|=0`

Answer

Step by step text solution for Without expanding the determinant , prove that |(s,a^(2),b^(2)+c^(2)),(s,b^(2),c^(2)+a^(2)),(s,c^(2),a^(2)+b^(2))|=0 by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.3|5 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.4|9 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -D (5 MARK )|3 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos
  • QUESTION PAPER -19

    SURA PUBLICATION|Exercise SECTION - IV|11 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

Show that |(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2))|=0 .

Show that |{:(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2)):}| = 0

Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2))|=4a^(2)b^(2)c^(2).

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

Prove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=(a-b)(b-c)(c-a)

Prove that |(a,b),(c,d)|^(2)=|(a^(2)+c^(2),ab+cd),(ab+cd,b^(2)+d^(2))|

In Delta ABC, prove that (a^(2) - b^(2) + c^(2)) tan B = (a^(2) + b^(2) - c^(2)) tan C.

Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0 .

Prove that |(1/a^(2),bc,b+c),(1/b^(2),ca,c+a),(1/c^(2), ab, a+b)|=0