Home
Class 11
MATHS
If A = [(1,0,0),(0,1,0),(a,b,-1)], show ...

If A = `[(1,0,0),(0,1,0),(a,b,-1)]`, show that `A^(2)` is a unit matrix.

Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.2|22 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.3|5 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos
  • QUESTION PAPER -19

    SURA PUBLICATION|Exercise SECTION - IV|11 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A= ((2,3),(-1,2)) .Show that A^(2)-4A+7I=0 whwre I is the unit matrix of order 2.

Let a and b be two real numbers such that a > 1, b > 1. If A=[(a,0), (0,b)] , then lim_(n to oo) A^(-n) is a. unit matrix b. null matrix c. 2l d. none of these

If A=[(0,1,1),(1,0,1),(1,1,0)] show that A^(-1)=1/2(A^(2)-3I) .

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

If A= [{:(0,1,1),(1,0,1),(1,1,0):}], "show that" A^(-1)=(1)/(2)(A^(2)-3I)

If A=[{:(0,1,1),(1,0,1),(1,1,0):}] show that A^(-1)=(1)/(2)(A^(2)=3I)

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

A= [(0,-2,1),(2,0,-4),(-1,0,0)] then A is