Home
Class 11
MATHS
If |(a,b,aalpha+b),(b,c,balpha+c),(aalph...

If `|(a,b,aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c,0)|=0,` prove that a,b,c, are in G.P. or `alpha` is a root of `ax^(2)+`2bx+c=0

Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.3|5 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.4|9 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -D (5 MARK )|3 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos
  • QUESTION PAPER -19

    SURA PUBLICATION|Exercise SECTION - IV|11 Videos

Similar Questions

Explore conceptually related problems

If |{:(a,b,a alpha+b),(b,c,b alpha+c),(a alpha +b,b alpha+c,0):}|=0 Prove that a,b,c are in G.P. or alpha is a root of ax^2 + 2bx + c=0

If a , b, c, … are in G.P. then 2a,2b,2c,… are in ….

In the quadratic ax^2+bx+c=0,D=b^2-4ac and alpha+beta,alpha^2+beta^2,alpha^3+beta^3, are in G.P , where alpha,beta are the roots of ax^2+bx+c, then (a) Delta != 0 (b) bDelta = 0 (c) cDelta = 0 (d) Delta = 0

If a,b, and c are in G.P then a+b,2b and b+ c are in

If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If |(a,b-c,b+c),(a+c,b,c-a),(a-b,a+b,c)|=0 then the line ax+by+c=0 passes through the fixed point which is

If abc=p and A=[(a,b,c),(c,a,b),(b,c,a)] , prove that A is orthogonal if and only if a, b, c are the roots of the equation x^(3) pm x^(2)-p=0 .

If a,b and c are distinct positive real numbers in A.P, then the roots of the equation ax^(2)+2bx+c=0 are

Prove that =|a c c-a +b c b b-c b+c a-b b-c 0 a-c x y z 1+x+y|=0 implies that a ,b ,c are in A.P. or a ,c ,b are in G.P.

If alpha" and "beta, alpha" and "gamma" and "alpha" and "delta are the roots of the equations ax^(2)+2bx+c=0, 2bx^(2)+cx+a=0" and "cx^(2)+ax+2b=0 respectively, where a,b and c are positive real numbers, then alpha+alpha^(2)=

SURA PUBLICATION-MATRICES AND DETERMINANTS -EXERCISE 7.2
  1. Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)...

    Text Solution

    |

  2. Prove that |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=abc(1+(1)/(a)+(1)/(b)+(1)...

    Text Solution

    |

  3. Prove that |(sec^(2)theta,tan^(2)theta,1),(tan^(2)theta,sec^(2)theta,-...

    Text Solution

    |

  4. Show that |(x+2a,y+2b,z+2c),(x,y,z),(a,b,c)|=0.

    Text Solution

    |

  5. Write the general form of a 3xx3 skew -symmetric matrix and prove that...

    Text Solution

    |

  6. If |(a,b,aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c,0)|=0, prove that...

    Text Solution

    |

  7. Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0.

    Text Solution

    |

  8. If a,b,c are p^(pt),q^(th) and r^(th) terms of an A.P., find the value...

    Text Solution

    |

  9. Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))...

    Text Solution

    |

  10. If a,b,c are all positive, and are p^(th), q^(th) and r^(th) terms of ...

    Text Solution

    |

  11. Find the value of |(1,log(x) y,log(x) z),(log(y) x,1,log(y) z),(log(z)...

    Text Solution

    |

  12. If A = [((1)/(2),alpha),(0,(1)/(2))] , prove that sum(k=1)^(n)"det" (A...

    Text Solution

    |

  13. Without expanding, evaluate the determinants : |(2,3,4),(5,6,8),(6x...

    Text Solution

    |

  14. Without expanding evaluate the folleing determinents (ii)|(x+y,y+z,z+x...

    Text Solution

    |

  15. If A is a square matrix and |A|=2, find the value of |"AA"|^(T) .

    Text Solution

    |

  16. If A and B are square matrices of order 3 such that |A| = -1 and |B| =...

    Text Solution

    |

  17. If lambda = -2, determine the value of |(0,2lambda,1),(lambda^(2),0,3l...

    Text Solution

    |

  18. Determine the roots of the equation |(1,4,20),(1,-2,5),(1,2x,5x^(2))|=...

    Text Solution

    |

  19. Verify that det (AB) = (det A) (det B) for A=[(4,3,-2),(1,0,7),(2,3...

    Text Solution

    |

  20. Using cofactors of elements of second row, evaluate |A|, where A = [(5...

    Text Solution

    |