Home
Class 11
MATHS
Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)...

Show that `|(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))|` is divisible by `x^(2)`.

Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.3|5 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.4|9 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -D (5 MARK )|3 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos
  • QUESTION PAPER -19

    SURA PUBLICATION|Exercise SECTION - IV|11 Videos

Similar Questions

Explore conceptually related problems

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(4)

Show that |{:(a^2 + x^2 , ab, ac),(ab, b^2 + x^2 , bc),(ac, bc, c^2 +x^2):}| is divisible by x^4

Show that |(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2))|=0 .

Show that |{:(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2)):}| = 0

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

By using properties of determinants , show that : {:[( a^(2) + 1, ab,ac),(ab,b^(2) + 1,bc),( ca, cb, c^(2) +1) ]:}= 1+a^(2) +b^(2) +c^(2)

Show that |((a+b)^(2),(a-b)^(2),ab),((b+c)^(2),(b-c)^(2),bc),((c+a)^(2),(c-a)^(2),ca)|

Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0 .

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

The determinant "Delta"=|(a^2+x) ab ac ab (b^2+x) bc ac bc (c^2+x)| is divisible by a. x b. x^2 c. x^3 d. none of these

SURA PUBLICATION-MATRICES AND DETERMINANTS -EXERCISE 7.2
  1. Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)...

    Text Solution

    |

  2. Prove that |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=abc(1+(1)/(a)+(1)/(b)+(1)...

    Text Solution

    |

  3. Prove that |(sec^(2)theta,tan^(2)theta,1),(tan^(2)theta,sec^(2)theta,-...

    Text Solution

    |

  4. Show that |(x+2a,y+2b,z+2c),(x,y,z),(a,b,c)|=0.

    Text Solution

    |

  5. Write the general form of a 3xx3 skew -symmetric matrix and prove that...

    Text Solution

    |

  6. If |(a,b,aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c,0)|=0, prove that...

    Text Solution

    |

  7. Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0.

    Text Solution

    |

  8. If a,b,c are p^(pt),q^(th) and r^(th) terms of an A.P., find the value...

    Text Solution

    |

  9. Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))...

    Text Solution

    |

  10. If a,b,c are all positive, and are p^(th), q^(th) and r^(th) terms of ...

    Text Solution

    |

  11. Find the value of |(1,log(x) y,log(x) z),(log(y) x,1,log(y) z),(log(z)...

    Text Solution

    |

  12. If A = [((1)/(2),alpha),(0,(1)/(2))] , prove that sum(k=1)^(n)"det" (A...

    Text Solution

    |

  13. Without expanding, evaluate the determinants : |(2,3,4),(5,6,8),(6x...

    Text Solution

    |

  14. Without expanding evaluate the folleing determinents (ii)|(x+y,y+z,z+x...

    Text Solution

    |

  15. If A is a square matrix and |A|=2, find the value of |"AA"|^(T) .

    Text Solution

    |

  16. If A and B are square matrices of order 3 such that |A| = -1 and |B| =...

    Text Solution

    |

  17. If lambda = -2, determine the value of |(0,2lambda,1),(lambda^(2),0,3l...

    Text Solution

    |

  18. Determine the roots of the equation |(1,4,20),(1,-2,5),(1,2x,5x^(2))|=...

    Text Solution

    |

  19. Verify that det (AB) = (det A) (det B) for A=[(4,3,-2),(1,0,7),(2,3...

    Text Solution

    |

  20. Using cofactors of elements of second row, evaluate |A|, where A = [(5...

    Text Solution

    |