Home
Class 11
MATHS
For any vector veca prove that |vecaxxha...

For any vector `veca` prove that `|vecaxxhati|^(2)+|vecaxxhatj|^(2)+|vecaxxhatk|^(2)=2|veca|^(2)`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA -I

    SURA PUBLICATION|Exercise EXERCISE 8.5|25 Videos
  • VECTOR ALGEBRA -I

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -A (1- MARK)|9 Videos
  • VECTOR ALGEBRA -I

    SURA PUBLICATION|Exercise EXERCISE 8.3|19 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

For any vector veca prove that |veca xxhati|^(2)+|vecaxxhatj|^(2)+|vecaxxhatk|^(2)=2|veca|^(2) .

For any vector veca prove that hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxhatk)=2veca

For any two vectors veca and vecb prove that |vecaxxvecb|^(2)+(veca*vecb)^(2)=|veca|^(2)|vecb|^(2)

If veca,vecb are any two vectors, then prove that |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2)

For any two vectors vec a and vec b , prove that | vec a xx vec b|^(2) = |vec a|^(2)|vec b|^(2) - (vec a . vecb)^(2) = [[veca.veca veca .vecb], [veca.vecb vec b.vecb]]

for any two vectors veca and vecb , prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2) .

If veca.vecb are say two vectors, then prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2)

For any two vectors veca and vecb|veca X vecb|^(2)+|veca.vecb| is:

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

Let veca and vecb be two unit vectors then maximum value of (|veca+vecb|^2-|veca-vecb|^2)/(|veca+vecb|^2+|veca-barb|^2) is equal to