Home
Class 11
MATHS
If f(x)=x^(2)-3x, then the points at whi...

If `f(x)=x^(2)-3x`, then the points at which f(x) = f'(x) are :

A

both irrational

B

one rational and another irrational

C

Both positive integers

D

both negative integers

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER -19

    SURA PUBLICATION|Exercise SECTION - II|10 Videos
  • QUESTION PAPER -19

    SURA PUBLICATION|Exercise SECTION - III|10 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -D (5 MARK )|3 Videos
  • SETS RELATIONS AND FUNCTIONS

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS (SECTION - D) (MARKS 5)|11 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x^(2) -3x , then the point at which f'(x) = f(x) are…............. .

If f( x ) = x^(2) - 3x , then the points at whichf(x) = f ’(x) are ...............

If f(x)=2x^(2)+3x-5 , then prove that f'(0)+3f'(-1)=0

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

If f'(x)=3x^2 -4x+5" and "f(1)=3 , then find f(x) .

If f(x)=x+2, " then " f'(f(x)) at x=4 is

IF f(x) = ( x+2)/(3x-1) , then f(f(x)) is