Home
Class 11
MATHS
The value of vec(AB)+vec(BC)+vec(DA)+ve...

The value of `vec(AB)+vec(BC)+vec(DA)+vec(CD)`is

A

`vec(AD)`

B

`vec(CA)`

C

`vec(0)`

D

`vec(-AD)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise Section - II|10 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section - III|10 Videos
  • SURAs MODEL QUESTION PAPER - 1

    SURA PUBLICATION|Exercise PART-IV|11 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise SECTION - D|5 Videos

Similar Questions

Explore conceptually related problems

The value of |vec(a)+vec(b)|^(2)+|vec(a)-vec(b)|^(2) is

If [vec(a),vec(b),vec(c)]=1, then the value of (vec(a)*(vec(b)xxvec(c)))/((vec(c)xxvec(a))*vec(a))+(vec(b)*(vec(c)xxvec(a)))/((vec(a)xxvec(b))*vec(c))+(vec(c)(vec(a)xxvec(b)))/((vec(c)xxvec(b))*vec(a)) is

If vec(a),vec(b),vec(c) are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of (vec(a)+vec(b))*(vec(b)xxvec(c))+(vec(b)+vec(c))*(vec(c)xxvec(a))+(vec(c)+vec(a))*(vec(a)xxvec(b))

If ABCD is a parallelogram then vec(AB) + vec(AD) + vec(CB) + vec(CD) = …………………… .

If ABCD is a parallelogram, then vec(AB)+vec(AD)+vec(CB)+vec(CD) is equal to

If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then prove that vec(AB)+vec(AD)+vec(CB)+vec(CD)=4vec(EF) .

If vec(A) + vec(B) +vec(C)=0, "then" vec(A) xx vec(B) is :