Home
Class 11
MATHS
If vec(PO) + vec(OQ) = vec(QO) + vec(O...

If ` vec(PO) + vec(OQ) = vec(QO) + vec(OR)` prove that the points P,Q,R are collinear .

Text Solution

Verified by Experts

The correct Answer is:
Q
Promotional Banner

Topper's Solved these Questions

  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section - III|10 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • SURAs MODEL QUESTION PAPER - 1

    SURA PUBLICATION|Exercise PART-IV|11 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise SECTION - D|5 Videos

Similar Questions

Explore conceptually related problems

On the xy plane where O is the origin, given points, A(1,0), B(0,1) and C(1,1). Let P,Q, and R be moving points on the line OA, OB, OC respectively such that vec(OP)=45t(vec(OA)), vec(OQ)=60t(vec(OB)), vec(OR)=(1-t)(vec(OC)) with t gt 0 . If the three points P,Q and R are collinear then the value of t is equal to

if vec Ao + vec O B = vec B O + vec O C ,than prove that B is the midpoint of AC.

(i) vec a and vec -a are collinear

Statement 1: if three points P ,Qa n dR have position vectors vec a , vec b ,a n d vec c , respectively, and 2 vec a+3 vec b-5 vec c=0, then the points P ,Q ,a n dR must be collinear. Statement 2: If for three points A ,B ,a n dC , vec A B=lambda vec A C , then points A ,B ,a n dC must be collinear.

If vec a , vec ba n d vec c are non-coplanar vectors, prove that the four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+ 4 vec b-2 vec ca n d vec a-6 vec b+6 vec c are coplanar.

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

Let vec O A- vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w h e r eO ,Aa n dC are non-collinear points. Let p denotes the areaof quadrilateral O A C B , and let q denote the area of parallelogram with O Aa n dO C as adjacent sides. If p=k q , then find kdot

Consider two points P and Q with position vectors vec(OP) = 3 vec a - 2 vec b and vec(OQ) = vec a + vec b .Find the position vector of a point R which divides the line joining P and Q in the ratio 2 : 1 (i) internally (ii) externally.

If vec a , vec ba n d vec c are three non-zero vectors, no two of which ar collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c|dot

In a quadrilateral P Q R S , vec P Q= vec a , vec Q R , vec b , vec S P= vec a- vec b ,M is the midpoint of vec Q Ra n dX is a point on S M such that S X=4/5S Mdot Prove that P ,Xa n dR are collinear.