Home
Class 12
MATHS
Integrate the functions(e^(5logx)-e^(4lo...

Integrate the functions`(e^(5logx)-e^(4logx))/(e^(2logx)-e^(2logx))`

Text Solution

AI Generated Solution

To solve the integral of the function \(\frac{e^{5 \log x} - e^{4 \log x}}{e^{2 \log x} - e^{2 \log x}}\), we can simplify the expression step by step. ### Step 1: Simplify the Exponential Functions Using the property of logarithms, we know that \(e^{\log a} = a\). Therefore, we can rewrite the terms in the integral: \[ e^{5 \log x} = x^5, \quad e^{4 \log x} = x^4, \quad e^{2 \log x} = x^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx

int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx=

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

e^(x+2logx)

Evaluate : int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx .

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

If y=(e^(4logx)-e^(3logx))/(e^(2logx)-e^(logx))," then: "(dy)/(dx)=

int(logx)/(x(1+logx)(2+logx))dx=

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to