Home
Class 12
MATHS
The anti derivative of (sqrt(x)+1/(sqrt(...

The anti derivative of `(sqrt(x)+1/(sqrt(x)))`equals(A) `1/3x^(1/3)+2x^(1/2)+C` (B) `2/3x^(2/3)+1/2x^2+C`(C) `2/3x^(3/2)+2x^(1/2)+C` (D) `3/2x^(3/2)+1/2x^(1/2)+C`

Text Solution

AI Generated Solution

To find the antiderivative of the function \( \sqrt{x} + \frac{1}{\sqrt{x}} \), we will integrate the expression step by step. ### Step 1: Rewrite the expression The expression can be rewritten using exponents: \[ \sqrt{x} = x^{1/2} \quad \text{and} \quad \frac{1}{\sqrt{x}} = x^{-1/2} \] Thus, we can express the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.2|39 Videos
  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(x)+sqrt(x-2))= , (A) (1)/(3)[x^(3/2)-(x-2)^(3/2)]+c , (B) (2)/(3)[x^(3/2)-(x-2)^(3/2)]+c , (C) (1)/(3)[(x-2)^(3/2)-x^(3/2)]+c , (D) (2)/(3)[(x-2)^(3/2)-x^(3/2)]+c

int(x^(3)dx)/(sqrt(1+x^(2))) is equal to (A) (1)/(3)sqrt(1+x^(2))(2+x^(2))+C(B)(1)/(3)sqrt(1+x^(2))(x^(2)-1)+C(C)(1)/(3)(1+x^(2))^((3)/(2))+C(D)(1)/(3)sqrt(1+x^(2))(x^(2)-2)+C

Choose the correct answer int sqrt(1+x^(2))dx is equal to (A)(x)/(2)sqrt(1+x^(2))+(1)/(2)log|(x+sqrt(x+x^(2)))|+C (B) (2)/(3)(1+x^(2))^((3)/(2))+C(C)(2)/(3)x(1+x^(2))^((3)/(2))+C(D)^(2)sqrt(1+x^(2))+(1)/(2)x^(2)log|x+sqrt(1+x^(2))|+C

If x=5+2sqrt(6), then sqrt((x)/(2))-(1)/(sqrt(2x))= (a) 1 (b) 2 (c) 3 (d) 4

Choose the correct answer int x^(2)e^(x^(3))dx equals (A) (1)/(3)e^(x^(3))+C(B)(1)/(3)e^(x^(2))+C(C)(1)/(2)e^(x^(3))+C(D)(1)/(2)e^(x^(2))+C

If int(x^(3)dx)/(sqrt(1+x^(2))) = a(1+x^(2))^(3//2) + bsqrt(1+x^(2)) + C , then

int sqrt (1 + x ^(2)). x dx = (1)/(3) (1 + x ^(2)) ^((3)/(2)) + c

If int((x+1))/(sqrt(2x-1))dx=f(x)sqrt(2x-1)+C. Then f(x) is equal to (A)(x+4)/(3) (B) (x+3)/(4) (C) (2)/(3)(x+2)(D)x+4

if f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then f'(3)+f'(6)= (A) 0 (B) 1 (C) 2 (D) 1/2

int(sqrt(x))/((1+x^(2))^((7)/(4)))dx=(A)(2)/(3)(x^((3)/(2)))/((x^(2)+1)^((3)/(4)))+C(B)(1)/(3)(x^((3)/(2)))/((x^(2)+1)^((3)/(4)))+C(C)(1)/(2)(x^((1)/(2)))/((x^(2)+1)^((3)/(4)))+C(D)(x^((3)/(2)))/((x^(2)+1)^((3)/(4)))+C