Home
Class 12
MATHS
If d/(dx)f(x)=4x^3-3/(x^4)such that f(2...

If `d/(dx)f(x)=4x^3-3/(x^4)`such that `f(2)=0.`Then f(x) is(A) `x^4+1/(x^3)-(129)/8` (B) `x^3+1/(x^4)+(129)/8`(C) `x^4+1/(x^3)+(129)/8` (D) `x^3+1/(x^4)-(129)/8`

Text Solution

AI Generated Solution

To solve the problem, we need to find the function \( f(x) \) given that its derivative is \[ \frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4} \] and that \( f(2) = 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.2|39 Videos
  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

If (d)/(dx)[f(x)]=4x^(3)-(3)/(x^(4)) solve that f(2)=0 then find f(x)

If (d)/(dx)(f(x))=4x such that f(2)=0, then f(x) is

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

If int((x+1))/(sqrt(2x-1))dx=f(x)sqrt(2x-1)+C. Then f(x) is equal to (A)(x+4)/(3) (B) (x+3)/(4) (C) (2)/(3)(x+2)(D)x+4

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx ,then

4^(x)-3x2^(x+1)+8=0

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is

If f(x)=x^(3)+2x^(2)+3x+4 and g(x) is the inverse of f(x) then g'(4) is equal to- (1)/(4)(b)0 (c) (1)/(3)(d)4