Home
Class 11
MATHS
FInd : tan75^0+cot75^0=...

FInd : `tan75^0+cot75^0=`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan 75^\circ + \cot 75^\circ \), we will follow these steps: ### Step 1: Express \( \tan 75^\circ \) using the angle addition formula We can express \( 75^\circ \) as \( 45^\circ + 30^\circ \). The angle addition formula for tangent is given by: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Here, let \( a = 45^\circ \) and \( b = 30^\circ \). Therefore, \[ \tan 75^\circ = \tan(45^\circ + 30^\circ) = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ} \] ### Step 2: Substitute the known values of \( \tan 45^\circ \) and \( \tan 30^\circ \) We know that: \[ \tan 45^\circ = 1 \quad \text{and} \quad \tan 30^\circ = \frac{1}{\sqrt{3}} \] Substituting these values into the formula gives: \[ \tan 75^\circ = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} \] ### Step 3: Simplify the expression for \( \tan 75^\circ \) Now, simplify the numerator and denominator: Numerator: \[ 1 + \frac{1}{\sqrt{3}} = \frac{\sqrt{3} + 1}{\sqrt{3}} \] Denominator: \[ 1 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}} \] Thus, we have: \[ \tan 75^\circ = \frac{\frac{\sqrt{3} + 1}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \] ### Step 4: Find \( \cot 75^\circ \) We know that \( \cot \theta = \frac{1}{\tan \theta} \). Therefore, \[ \cot 75^\circ = \frac{1}{\tan 75^\circ} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### Step 5: Add \( \tan 75^\circ \) and \( \cot 75^\circ \) Now we can add \( \tan 75^\circ \) and \( \cot 75^\circ \): \[ \tan 75^\circ + \cot 75^\circ = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} + \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### Step 6: Simplify the sum To add these fractions, we need a common denominator: \[ \tan 75^\circ + \cot 75^\circ = \frac{(\sqrt{3} + 1)^2 + (\sqrt{3} - 1)^2}{(\sqrt{3} - 1)(\sqrt{3} + 1)} \] ### Step 7: Calculate the numerator Calculating the squares: \[ (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] \[ (\sqrt{3} - 1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3} \] Adding these: \[ (4 + 2\sqrt{3}) + (4 - 2\sqrt{3}) = 8 \] ### Step 8: Calculate the denominator The denominator simplifies to: \[ (\sqrt{3} - 1)(\sqrt{3} + 1) = 3 - 1 = 2 \] ### Step 9: Final result Thus, we have: \[ \tan 75^\circ + \cot 75^\circ = \frac{8}{2} = 4 \] ### Conclusion Therefore, the final result is: \[ \tan 75^\circ + \cot 75^\circ = 4 \] ---

To solve the problem \( \tan 75^\circ + \cot 75^\circ \), we will follow these steps: ### Step 1: Express \( \tan 75^\circ \) using the angle addition formula We can express \( 75^\circ \) as \( 45^\circ + 30^\circ \). The angle addition formula for tangent is given by: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    RD SHARMA|Exercise Solved Examples And Exercises|167 Videos
  • TRIGONOMETRIC RATIOS OF MULTIPLE AND SUBMULTIPLE ANGLES

    RD SHARMA|Exercise Solved Examples And Exercises|193 Videos

Similar Questions

Explore conceptually related problems

tan75-cot75=

tan75^(@)+cot75^(@)=

tan 75^(@) - cot 75^(@)=

Show that tan75^(@)+cot75^(0)=4

What is the value of tan75^ @+ cot75^@ ?

tan75^@+tan15^@=….

If tan 15^@=2-sqrt3 , then the value of tan15^@ cot 75^@+tan75^@ cot 15^@ is

RD SHARMA-TRIGONOMETRIC RATIOS OF COMPOUND ANGLES-Solved Examples And Exercises
  1. Prove that: sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot

    Text Solution

    |

  2. If 3t a n At a n B=1, prove that 2cos(A+B)=cos(A-B)dot

    Text Solution

    |

  3. FInd : tan75^0+cot75^0=

    Text Solution

    |

  4. If alphaa n dbeta are the solutions of acostheta+bsintheta=c , then ...

    Text Solution

    |

  5. If alphaa n dbeta are the solutions of the equation at a ntheta+bs e c...

    Text Solution

    |

  6. If (sin(x+y))/(sin(x-y))=(a+b)/(a-b) , show that (tanx)/(tany)=a/b .

    Text Solution

    |

  7. If t a n(pi//4+theta)+t a n(pi//4-theta)=a , then t a n^2(pi//4+theta...

    Text Solution

    |

  8. If t a n x+tan(x+pi/3)+tan(x+(2pi)/3)=3, then prove that (3tanx-t a n^...

    Text Solution

    |

  9. If theta lies in the first quadrant and costheta=8/(17) , then prove t...

    Text Solution

    |

  10. If tan(A-B)=1,sec(A+B)=2/(sqrt(3)) , then the smallest positive value ...

    Text Solution

    |

  11. If t a nbeta=(nsinalphacosalpha)/(1-nsin^2alpha) , show that tan(alph...

    Text Solution

    |

  12. If A+B=pi/4 , prove that: (1+t a n A)(1+t a n B)=2 (cotA-1)(cot...

    Text Solution

    |

  13. Prove that: cotthetacot2theta+cot2thetacot3theta+2=cottheta(cottheta-c...

    Text Solution

    |

  14. If tan(alpha+theta)=ntan(alpha-theta) , show that (n+1)sin2theta=(n-1...

    Text Solution

    |

  15. Prove that: (sin(B-C))/(cosBcosC)+(sin(C-A))/(cosCcosA)+(sin(A-B))/(co...

    Text Solution

    |

  16. If tan( pi cos theta) = cot ( pi sin theta) then sin (theta + pi/4) e...

    Text Solution

    |

  17. Find the values of the following: (i)sin75^@ (ii) cos75^@ (iii) sin1...

    Text Solution

    |

  18. If cotalpha=1/2,secbeta=-5/3,where piltalphalt(3pi)/2and pi/2 ltbetalt...

    Text Solution

    |

  19. If sin A=3/5 ,0 < A < pi/2 and cosB=(-12)/(13),0 < B < (3pi)/2, find t...

    Text Solution

    |

  20. Prove that: (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27 x)=(1/2)(ta...

    Text Solution

    |