Home
Class 12
MATHS
Integrate the functions(sin^(-1)sqrt(x)-...

Integrate the functions`(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)), x in [0,1]`

Text Solution

AI Generated Solution

To solve the integral \[ I = \int_0^1 \frac{\sin^{-1}(\sqrt{x}) - \cos^{-1}(\sqrt{x})}{\sin^{-1}(\sqrt{x}) + \cos^{-1}(\sqrt{x})} \, dx, \] we can start by using the identity that relates the inverse sine and inverse cosine functions: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • INTEGRALS

    NCERT|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Find :int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx,x in[0,1]

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

Evaluate int(sin^-1sqrt (x)-cos^-1sqrt (x))/(sin^-1sqrt (x)+cos^-1sqrt (x))dx

sin^(-1)x=cos^(-1)sqrt(1-x^(2))

The value of int(sin^-1sqrt(x)-cos^-1sqrt(x))/(sin^-1sqrt(x)+cos^-1sqrt(x))dx is equal to

Integrate the following function: sin^(-1)(sqrt(x))

Integrate the functions sqrt(sin2x)cos2x

Integrate the functions (x cos^(-1)x)/(sqrt(1-x^(2)))